The Effect of Urban Air Pollution on Inflammation, Oxidative Stress, Coagulation, and Autonomic Dysfunction in Young Adults

The biological mechanisms linking air pollution to cardiovascular events still remain largely unclear. To investigate whether biological mechanisms linking air pollution to cardiovascular events occurred concurrently in human subjects exposed to urban air pollutants. We recruited a panel of 76 young...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of respiratory and critical care medicine Vol. 176; no. 4; pp. 370 - 376
Main Authors Chuang, Kai-Jen, Chan, Chang-Chuan, Su, Ta-Chen, Lee, Chung-Te, Tang, Chin-Sheng
Format Journal Article
LanguageEnglish
Published New York, NY Am Thoracic Soc 15.08.2007
American Lung Association
American Thoracic Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The biological mechanisms linking air pollution to cardiovascular events still remain largely unclear. To investigate whether biological mechanisms linking air pollution to cardiovascular events occurred concurrently in human subjects exposed to urban air pollutants. We recruited a panel of 76 young, healthy students from a university in Taipei. Between April and June of 2004 or 2005, three measurements were made in each participant of high-sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), plasminogen activator fibrinogen inhibitor-1 (PAI-1), tissue-type plasminogen activator (tPA) in plasma, and heart rate variability (HRV). Gaseous air pollutants were measured at one air-monitoring station inside their campus, and particulate air pollutants were measured at one particulate matter supersite monitoring station 1 km from their campus. We used linear mixed-effects models to associate biological endpoints with individual air pollutants averaged over 1- to 3-day periods before measurements were performed. We found that increases in hs-CRP, 8-OHdG, fibrinogen, and PAI-1, and decreases in HRV indices were associated with increases in levels of particles with aerodynamic diameters less than 10 microm and 2.5 microm, sulfate, nitrate, and ozone (O(3)) in single-pollutant models. The increase in 8-OHdG, fibrinogen, and PAI-1, and the reduction in HRV remained significantly associated with 3-day averaged sulfate and O(3) levels in two-pollutant models. There were moderate correlations (r = -0.3) between blood markers of hs-CRP, fibrinogen, PAI-1, and HRV indices. Urban air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction simultaneously in healthy young humans, with sulfate and O(3) as two major traffic-related pollutants contributing to such effects.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1073-449X
1535-4970
DOI:10.1164/rccm.200611-1627OC