Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74

Physico-chemical characterization of the high-silica zeolite catalyst SSZ-74 (ref. 1) suggested that it, like the related materials TNU-9 (ref. 2) and IM-5 (ref. 3), has a multidimensional 10-ring channel system. Such pore systems are ideal for many petrochemical applications, and indeed SSZ-74 has...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 7; no. 8; pp. 631 - 635
Main Authors McCusker, Lynne B, Baerlocher, Christian, Xie, Dan, Hwang, Son-Jong, Chan, Ignatius Y, Ong, Kenneth, Burton, Allen W, Zones, Stacey I
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2008
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Physico-chemical characterization of the high-silica zeolite catalyst SSZ-74 (ref. 1) suggested that it, like the related materials TNU-9 (ref. 2) and IM-5 (ref. 3), has a multidimensional 10-ring channel system. Such pore systems are ideal for many petrochemical applications, and indeed SSZ-74 has been shown to be a good catalyst for a wide variety of reactions. The elucidation of its framework structure, however, proved to be difficult. Comparable problems were encountered with TNU-9 and IM-5, which were synthesized with related structure-directing agents. Their framework structures, which are the two most complex ones known, both have 24 Si atoms in the asymmetric unit, and were finally solved by combining high-resolution powder diffraction data with information derived from high-resolution electron microscopy images. Therefore, a similar approach, using the powder charge-flipping algorithm to combine the two types of data and molecular modelling to help to locate the structure-directing agent, was applied to SSZ-74. This procedure eventually revealed a most unusual 23-Si-atom framework structure (|(C16H34N2)4|[Si92 4O184(OH)8]) with ordered Si vacancies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat2228