Using genetic evidence to evaluate four palaeoanthropological hypotheses for the timing of Neanderthal and modern human origins

A better understanding of the evolutionary relationship between modern humans and Neanderthals is essential for improving the resolution of hominin phylogenetic hypotheses. Currently, four distinct chronologies for the timing of population divergence are available, ranging from the late Middle Pleis...

Full description

Saved in:
Bibliographic Details
Published inJournal of human evolution Vol. 59; no. 1; pp. 87 - 95
Main Authors Endicott, Phillip, Ho, Simon Y.W., Stringer, Chris
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.07.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A better understanding of the evolutionary relationship between modern humans and Neanderthals is essential for improving the resolution of hominin phylogenetic hypotheses. Currently, four distinct chronologies for the timing of population divergence are available, ranging from the late Middle Pleistocene to the late Early Pleistocene, each based on different interpretations of hominin taxonomy. Genetic data can present an independent estimate of the evolutionary timescale involved, making it possible to distinguish between these competing models of hominin evolution. We analysed five dated Neanderthal mitochondrial genomes, together with those of 54 modern humans, and inferred a genetic chronology using multiple age calibrations. Our mean date estimates are consistent with a process of genetic divergence within an ancestral population, commencing approximately 410–440 ka. These results suggest that a reappraisal of key elements in the Pleistocene hominin fossil record may now be required.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0047-2484
1095-8606
DOI:10.1016/j.jhevol.2010.04.005