The Potent Anti-Tumor Effects of Rhodiola Drinking Are Associated with the Inhibition of the mTOR Pathway and Modification of Tumor Metabolism in the UPII-Mutant Ha-Ras Model
SHR-5 has been used as an "adaptogen" for enhancing physical and mental performance and for fighting stress in the healthy population. The purpose of this study is to determine the chemopreventive efficacy of SHR-5 for superficial bladder cancer and to investigate the underlying mechanisms...
Saved in:
Published in | Cancers Vol. 15; no. 12; p. 3086 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
07.06.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | SHR-5 has been used as an "adaptogen" for enhancing physical and mental performance and for fighting stress in the healthy population. The purpose of this study is to determine the chemopreventive efficacy of SHR-5 for superficial bladder cancer and to investigate the underlying mechanisms of action.
UPII-mutant Ha-ras bladder-cancer-transgenic mice, that developed low-grade and noninvasive papillary transitional urothelial cell carcinoma, were fed with 1.25 and 6.25 mg/mL SHR-5 in drinking water for 6 months. The survival of the mice, obstructive uropathy, tumor burden and morphology, and proliferation were evaluated by pathological, molecular, metabolic, and statistical analyses.
Approximately 95% or more of the male UPII-mutant Ha-ras mice that drank SHR-5 daily survived over 6 months of age, while only 33.3% of those mice that drank normal water survived over 6 months of age (
< 0.0001); SHR-5 drinking exposure also reduced tumor-bearing bladder weight and urinary tract obstruction and inhibited mTOR signaling in neoplastic tissues. Global metabolic analysis revealed that SHR-5 resulted in increased phenolic metabolites and decreased CoA, a critical metabolic cofactor for lipid metabolism.
Our findings highlight the potential of SHR-5 as an anti-aging agent for bladder cancer prevention through reshaping tumor metabolism via the inhibition of the mTOR signaling. Global metabolomics profiling provides a unique and efficient tool for studying the mechanisms of complex herb extracts' action. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2072-6694 2072-6694 |
DOI: | 10.3390/cancers15123086 |