Electrohydrodynamic Printed Ultra-Micro AgNPs Thin Film Temperature Sensors Array for High-Resolution Sensing

Current methods for thin film sensors preparation include screen printing, inkjet printing, and MEMS (microelectromechanical systems) techniques. However, their limitations in achieving sub-10 μm line widths hinder high-density sensors array fabrication. Electrohydrodynamic (EHD) printing is a promi...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 14; no. 8; p. 1621
Main Authors He, Yingping, Li, Lanlan, Su, Zhixuan, Xu, Lida, Guo, Maocheng, Duan, Bowen, Wang, Wenxuan, Cheng, Bo, Sun, Daoheng, Hai, Zhenyin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Current methods for thin film sensors preparation include screen printing, inkjet printing, and MEMS (microelectromechanical systems) techniques. However, their limitations in achieving sub-10 μm line widths hinder high-density sensors array fabrication. Electrohydrodynamic (EHD) printing is a promising alternative due to its ability to print multiple materials and multilayer structures with patterned films less than 10 μm width. In this paper, we innovatively proposed a method using only EHD printing to prepare ultra-micro thin film temperature sensors array. The sensitive layer of the four sensors was compactly integrated within an area measuring 450 μm × 450 μm, featuring a line width of less than 10 μm, and a film thickness ranging from 150 nm to 230 nm. The conductive network of silver nanoparticles exhibited a porosity of 0.86%. After a 17 h temperature-resistance test, significant differences in the performance of the four sensors were observed. Sensor 3 showcased relatively superior performance, boasting a fitted linearity of 0.99994 and a TCR of 937.8 ppm/°C within the temperature range of 20 °C to 120 °C. Moreover, after the 17 h test, a resistance change rate of 0.17% was recorded at 20 °C.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-666X
2072-666X
DOI:10.3390/mi14081621