Curcumin-loaded lipid and polymeric nanocapsules stabilized by nonionic surfactants: an in vitro and In vivo antitumor activity on B16-F10 melanoma and macrophage uptake comparative study

Curcumin is a polyphenol obtained from the plant Curcuma longa (called turmeric) that displays several pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial and antitumoral activity, but clinical use has been limited by its poor solubility in water and, consequently, mi...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical nanotechnology Vol. 7; no. 3; p. 406
Main Authors Mazzarino, Leticia, Silva, Luís F C, Curta, Juliana C, Licínio, Marley A, Costa, Aline, Pacheco, Leticia K, Siqueira, Jarbas M, Montanari, Jorge, Romero, Eder, Assreuy, Jamil, Santos-Silva, Maria C, Lemos-Senna, Elenara
Format Journal Article
LanguageEnglish
Published United States 01.06.2011
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Curcumin is a polyphenol obtained from the plant Curcuma longa (called turmeric) that displays several pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial and antitumoral activity, but clinical use has been limited by its poor solubility in water and, consequently, minimal systemic bioavailability. We have therefore formulated the drug into nanocarrier systems in an attempt to improve its therapeutic properties. This study evaluates the effect of intraperitoneally administered nanocapsules containing curcumin on subcutaneous melanoma in mice inoculated with B16-F10 cells, and on the cytotoxicity activity against B16-F10 cells in vitro. Phagocytic uptake of formulations was also evaluated upon incubation with macrophage J774 cells by fluorescence microscopy. Lipid and polymeric nanocapsules were prepared by the phase inversion and nanoprecipitation methods, respectively. The uptake of the lipid nanocapsules prepared using Solutol HS15 was significantly reduced in J774 cells. Curcumin, as free drug or as drug-loaded nanocapsules, was administrated at a dose of 6 mg/kg twice a week for 21 days. Free drug and curcumin-loaded nanocapsules significantly reduced tumor volume (P < 0.05 vs. control), but no difference was found in the antitumor activity displayed by lipid and polymeric nanocapsules. This assumption was supported by the in vitro study, in which free curcumin as well as loaded into nanocapsules caused significant reduction of cell viability in a concentration- and time-dependent manner.
ISSN:1550-7033
DOI:10.1166/jbn.2011.1296