WNT signaling and cancer stemness
Cancer stemness, defined as the self-renewal and tumor-initiation potential of cancer stem cells (CSCs), is a cancer biology property featuring activation of CSC signaling networks. Canonical WNT signaling through Frizzled and LRP5/6 receptors is transmitted to the β-catenin-TCF/LEF-dependent transc...
Saved in:
Published in | Essays in biochemistry Vol. 66; no. 4; p. 319 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.09.2022
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Cancer stemness, defined as the self-renewal and tumor-initiation potential of cancer stem cells (CSCs), is a cancer biology property featuring activation of CSC signaling networks. Canonical WNT signaling through Frizzled and LRP5/6 receptors is transmitted to the β-catenin-TCF/LEF-dependent transcription machinery to up-regulate MYC, CCND1, LGR5, SNAI1, IFNG, CCL28, CD274 (PD-L1) and other target genes. Canonical WNT signaling causes expansion of rapidly cycling CSCs and modulates both immune surveillance and immune tolerance. In contrast, noncanonical WNT signaling through Frizzled or the ROR1/2 receptors is transmitted to phospholipase C, Rac1 and RhoA to control transcriptional outputs mediated by NFAT, AP-1 and YAP-TEAD, respectively. Noncanonical WNT signaling supports maintenance of slowly cycling, quiescent or dormant CSCs and promotes epithelial-mesenchymal transition via crosstalk with TGFβ (transforming growth factor-β) signaling cascades, while the TGFβ signaling network induces immune evasion. The WNT signaling network orchestrates the functions of cancer-associated fibroblasts, endothelial cells and immune cells in the tumor microenvironment and fine-tunes stemness in human cancers, such as breast, colorectal, gastric and lung cancers. Here, WNT-related cancer stemness features, including proliferation/dormancy plasticity, epithelial-mesenchymal plasticity and immune-landscape plasticity, will be discussed. Porcupine inhibitors, β-catenin protein-protein interaction inhibitors, β-catenin proteolysis targeting chimeras, ROR1 inhibitors and ROR1-targeted biologics are investigational drugs targeting WNT signaling cascades. Mechanisms of cancer plasticity regulated by the WNT signaling network are promising targets for therapeutic intervention; however, further understanding of context-dependent reprogramming trajectories might be necessary to optimize the clinical benefits of WNT-targeted monotherapy and applied combination therapy for patients with cancer. |
---|---|
ISSN: | 1744-1358 |
DOI: | 10.1042/ebc20220016 |