Unraveling salt stress signaling in plants

Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic s...

Full description

Saved in:
Bibliographic Details
Published inJournal of integrative plant biology Vol. 60; no. 9; pp. 796 - 804
Main Authors Yang, Yongqing, Guo, Yan
Format Journal Article
LanguageEnglish
Published China (Republic : 1949- ) Wiley Subscription Services, Inc 01.09.2018
State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re‐establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen‐activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1‐related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt‐induced stress signaling in plants. Salt stress is the main environmental factor limiting crop productivity. A better understanding of the mechanisms that regulate salt tolerance will help researchers design ways to improve crop performance. In this review, we discuss recent advances in determining the components of plants that respond to salt stress and their regulatory mechanisms.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1672-9072
1744-7909
DOI:10.1111/jipb.12689