Acute Effects of Static, Dynamic, and Proprioceptive Neuromuscular Facilitation Stretching on Muscle Power in Women
Manoel, ME, Harris-Love, MO, Danoff, JV, and Miller, TA. Acute effects of static, dynamic, and proprioceptive neuromuscular facilitation stretching on muscle power in women. J Strength Cond Res 22(5)1528-1534, 2008-The purpose of this study was to investigate the acute effects of 3 types of stretchi...
Saved in:
Published in | Journal of strength and conditioning research Vol. 22; no. 5; pp. 1528 - 1534 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Strength and Conditioning Association
01.09.2008
Lippincott Williams & Wilkins Ovid Technologies |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Manoel, ME, Harris-Love, MO, Danoff, JV, and Miller, TA. Acute effects of static, dynamic, and proprioceptive neuromuscular facilitation stretching on muscle power in women. J Strength Cond Res 22(5)1528-1534, 2008-The purpose of this study was to investigate the acute effects of 3 types of stretching-static, dynamic, and proprioceptive neuromuscular facilitation (PNF)-on peak muscle power output in women. Concentric knee extension power was measured isokinetically at 60°·s and 180°·s in 12 healthy and recreationally active women (mean age ± SD, 24 ± 3.3 years). Testing occurred before and after each of 3 different stretching protocols and a control condition in which no stretching was performed. During 4 separate laboratory visits, each subject performed 5 minutes of stationary cycling at 50 W before performing the control condition, static stretching protocol, dynamic stretching protocol, or PNF protocol. Three submaximal warm-up trials preceded 3 maximal knee extensions at each testing velocity. A 2-minute rest was allowed between testing at each velocity. The results of the statistical analysis indicated that none of the stretching protocols caused a decrease in knee extension power. Dynamic stretching produced percentage increases (8.9% at 60°·s and 6.3% at 180°·s) in peak knee extension power at both testing velocities that were greater than changes in power after static and PNF stretching. The findings suggest that dynamic stretching may increase acute muscular power to a greater degree than static and PNF stretching. These findings may have important implications for athletes who participate in events that rely on a high level of muscular power. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1064-8011 1533-4287 |
DOI: | 10.1519/JSC.0b013e31817b0433 |