Variation in folate pathway genes contributes to risk of congenital heart defects among individuals with Down syndrome
Cardiac abnormalities are one of the most common congenital defects observed in individuals with Down syndrome. Considerable research has implicated both folate deficiency and genetic variation in folate pathway genes with birth defects, including both congenital heart defects (CHD) and Down syndrom...
Saved in:
Published in | Genetic epidemiology Vol. 34; no. 6; pp. 613 - 623 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.09.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cardiac abnormalities are one of the most common congenital defects observed in individuals with Down syndrome. Considerable research has implicated both folate deficiency and genetic variation in folate pathway genes with birth defects, including both congenital heart defects (CHD) and Down syndrome (DS). Here, we test variation in folate pathway genes for a role in the major DS‐associated CHD atrioventricular septal defect (AVSD). In a group of 121 case families (mother, father, and proband with DS and AVSD) and 122 control families (mother, father, and proband with DS and no CHD), tag SNPs were genotyped in and around five folate pathway genes: 5,10‐methylenetetrahyrdofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), cystathionine β‐synthase (CBS), and the reduced folate carrier (SLC19A1, RFC1). SLC19A1 was found to be associated with AVSD using a multilocus allele‐sharing test. Individual SNP tests also showed nominally significant associations with odds ratios of between 1.34 and 3.78, depending on the SNP and genetic model. Interestingly, all marginally significant SNPs in SLC19A1 are in strong linkage disequilibrium (r2≥0.8) with the nonsynonymous coding SNP rs1051266 (c.80A>G), which has previously been associated with nonsyndromic cases of CHD. In addition to SLC19A1, the known functional polymorphism MTHFR c.1298A was over‐transmitted to cases with AVSD (P=0.05) and under‐transmitted to controls (P=0.02). We conclude, therefore, that disruption of the folate pathway contributes to the incidence of AVSD among individuals with DS. Genet. Epidemiol. 34: 603–612, 2010. © 2010 Wiley‐Liss, Inc. |
---|---|
Bibliography: | ark:/67375/WNG-10VVC7MM-F Children's Healthcare of Atlanta Cardiac Research Committee, the American Heart Association, SeattleSNPs PGA NHLBI - No. U01 HL66682 istex:CCC73C4A0F48C2734EFE8D5A5EB8A778247E9552 ArticleID:GEPI20518 NIH - No. R01 HD38979; No. R01 HG003618; No. R01 HL083300; No. P0 1HD24605; No. F32 HD046337 General Clinical Research Center at Emory University NIH/NCRR - No. M01 RR00039 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0741-0395 1098-2272 1098-2272 |
DOI: | 10.1002/gepi.20518 |