MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia

Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule,...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 81; no. 2; pp. 774 - 782
Main Authors Tang, Kaihao, Su, Ying, Brackman, Gilles, Cui, Fangyuan, Zhang, Yunhui, Shi, Xiaochong, Coenye, Tom, Zhang, Xiao-Hua
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 10(5) s(-1) M(-1). Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the "HXHXDH" motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Tang K, Su Y, Brackman G, Cui F, Zhang Y, Shi X, Coenye T, Zhang X-H. 2015. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia. Appl Environ Microbiol 81:774–782. doi:10.1128/AEM.02805-14.
ISSN:0099-2240
1098-5336
1098-6596
DOI:10.1128/AEM.02805-14