Delineation of the Role of the Mre11 Complex in Class Switch Recombination

Class switch recombination (CSR) is a region-specific, transcriptionally regulated, nonhomologous recombinational process that is initiated by activation-induced cytidine deaminase (AID). The initial lesions in the switch (S) regions are processed and resolved, leading to a recombination of the two...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 279; no. 16; pp. 16479 - 16487
Main Authors Lähdesmäki, Aleksi, Taylor, A. Malcolm R., Chrzanowska, Krystyna H., Pan-Hammarström, Qiang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.04.2004
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Class switch recombination (CSR) is a region-specific, transcriptionally regulated, nonhomologous recombinational process that is initiated by activation-induced cytidine deaminase (AID). The initial lesions in the switch (S) regions are processed and resolved, leading to a recombination of the two S regions involved. The mechanism involved in the repair and ligation of the broken DNA ends is however still unclear. Here, we describe that switching is less efficient in cells from patients with Mre11 deficiency (Ataxia-Telangiectasia-like disorder, ATLD) and, more importantly, that the switch recombination junctions resulting from the in vivo switching events are aberrant. There was a trend toward an increased usage of microhomology (≥4 bp) at the switch junctions in both ATLD and Nijmegen breakage syndrome (NBS) patients. However, the DNA ends were not joined as “perfectly” as those from Ataxia-Telangiectasia (A-T) patients and 1–2 bp mutations or insertions were often observed. In switch junctions from ATLD patients, there were fewer base substitutions due to transitions and, most strikingly, the substitutions that occurred most often in controls, C → T transitions, never occurred at, or close to, the junctions derived from the ATLD patients. In switch junctions from NBS patients, all base substitutions were observed at the G/C nucleotides, and transitions were preferred. These data suggest that the Mre11-Rad50-Nbs1 complex (Mre11 complex) is involved in the nonhomologous end joining pathway in CSR and that Mre11, Nbs1, and protein mutated in ataxia-telangiectasia (ATM) might have both common and independent roles in this process.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M312796200