A Simulation Study on the Effect of Residual Stress on the Multi-Layer Selective Laser Melting Processes Considering Solid-State Phase Transformation

The selective laser melting (SLM) manufacturing process is a complex process involving moving a molten pool, rapid non-equilibrium solidification and solid phase transformation. If the thermal residual stress is too large, it may lead to warping, cracking and failure of the structures. The present w...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 20; p. 7175
Main Authors Li, Xiao, Zhang, Ming, Qi, Junfeng, Yang, Zhengmao, Jiao, Zhonghua
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The selective laser melting (SLM) manufacturing process is a complex process involving moving a molten pool, rapid non-equilibrium solidification and solid phase transformation. If the thermal residual stress is too large, it may lead to warping, cracking and failure of the structures. The present work aims to establish a thermo-mechanical framework to predict temperature evolutions, molten pool configurations and residual stresses of materials in the SLM process, based on the toolpath-mesh intersection method. Moreover, the influences of the laser power, process parameters and mesh size have been discussed. The stress concentration occurred at the interface between the melt layer and substrate results in warping deformation of the materials. This work provides a novel method to reveal the resulting physical mechanism inside the molten pool in terms of residual stresses and distortions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15207175