Corrosion Crack Morphology and Creep Analysis of Members Based on Meso-Scale Corrosion Penetration

In this paper, to study the development of load-carrying capacity and long-term creep performance of reinforced concrete beams under different corrosion patterns, the rate-dependent model of concrete is used as the basis to consider the creep development process from the meso-scale level. The porosi...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 20; p. 7338
Main Authors Zeng, Bin, Yang, Yiping, Gong, Fuyuan, Maekawa, Koichi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, to study the development of load-carrying capacity and long-term creep performance of reinforced concrete beams under different corrosion patterns, the rate-dependent model of concrete is used as the basis to consider the creep development process from the meso-scale level. The porosity mechanics method is used to simulate the generation and penetration process of corrosion products. Three corrosion conditions are set: bottom longitudinal reinforcement corrosion, top longitudinal reinforcement corrosion and all reinforcement corrosion. The corrosion rate is used as the variable in each corrosion condition. The results show that: (1) the greater the corrosion rate in all conditions, the lower the bearing capacity. In addition, the corrosion of top longitudinal reinforcement causes the damage form of the beam to change to brittle damage; (2) the creep coefficient decreases with the increase in corrosion rate in all working conditions, but the main factor for this phenomenon is the obvious increase in initial deformation. Consequently, it is not suitable to follow the conventional creep concept (deformation development/initial deformation) for the development of plastic deformation of damaged members. It is more reasonable to use the global deflection to describe the long-term deformation of corrosion-damaged members.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15207338