Exploring the Antibacterial Potential of Konjac Glucomannan in Periodontitis: Animal and In Vitro Studies

Background and Objectives: Periodontitis is an inflammatory disease in the supporting tissues of the teeth caused by specific microorganisms or groups of microorganisms. P. gingivalis bacterium is the keystone pathogen in periodontitis, so even at low concentrations, it has a considerable influence...

Full description

Saved in:
Bibliographic Details
Published inMedicina (Kaunas, Lithuania) Vol. 59; no. 10; p. 1778
Main Authors Lestari, Kartika Dhipta, Dwiputri, Edlyn, Kurniawan Tan, Geraldi Hartono, Sulijaya, Benso, Soeroso, Yuniarti, Natalina, Natalina, Harsas, Nadhia Anindhita, Takahashi, Naoki
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background and Objectives: Periodontitis is an inflammatory disease in the supporting tissues of the teeth caused by specific microorganisms or groups of microorganisms. P. gingivalis bacterium is the keystone pathogen in periodontitis, so even at low concentrations, it has a considerable influence on the oral community. Antimicrobials and antiplaque agents can be used as adjunctive therapy for periodontitis treatment. Konjac glucomannan (KGM), as a natural polysaccharide, has flavonoid (3,5-diacetyltambulin) and triterpenoids (ambylon) compounds that show antibacterial activity. This research aims to analyze the antibacterial activity of KGM on animal and in vitro periodontitis models. Materials and Methods: The animal study divided 48 mice into four groups (control, KGM, periodontitis, KGM + periodontitis). Mice were given an intervention substance by oral gavage from day 1 to day 14, periodontitis was induced on day 7, and decapitation was performed on day 14. Samples from the right maxillary jaw of mice were used for histological preparations and morphometrics analysis. In vitro studies were carried out by adding several concentrations of KGM (25, 50, and 100 μg/mL) into a planktonic P. gingivalis and P. gingivalis biofilm. Results: In the animal model, KGM could prevent alveolar bone loss in the periodontitis mice model, both in histologic and morphometrics assessments. In vitro, KGM had antibacterial activity against P. gingivalis with better bacteriostatic (15–23%) than bactericidal (11–20%) ability, proven by its ability to inhibit P. gingivalis proliferation. Conclusions: KGM can be considered to have the potential as an antibacterial agent to prevent periodontitis. The prevention of periodontitis may improve patient well-being and human quality of life.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1648-9144
1010-660X
1648-9144
DOI:10.3390/medicina59101778