Sludge palm oil as a renewable raw material for biodiesel production by two-step processes

In this study, biodiesel was produced from sludge palm oil (SPO) using tolune-4-sulfonic monohydrate acid (PTSA) as an acid catalyst in different dosages in the presence of methanol to convert free fatty acid (FFA) to fatty acid methyl ester (FAME), followed by a transesterification process using an...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 101; no. 20; pp. 7804 - 7811
Main Authors Hayyan, Adeeb, Alam, Md. Zahangir, Mirghani, Mohamed E.S., Kabbashi, Nassereldeen A., Hakimi, Noor Irma Nazashida Mohd, Siran, Yosri Mohd, Tahiruddin, Shawaluddin
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2010
[New York, NY]: Elsevier Ltd
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, biodiesel was produced from sludge palm oil (SPO) using tolune-4-sulfonic monohydrate acid (PTSA) as an acid catalyst in different dosages in the presence of methanol to convert free fatty acid (FFA) to fatty acid methyl ester (FAME), followed by a transesterification process using an alkaline catalyst. In the first step, acid catalyzed esterification reduced the high FFA content of SPO to less than 2% with the different dosages of PTSA. The optimum conditions for pretreatment process by esterification were 0.75% (w/w) dosage of PTSA to SPO, 10:1 M ratio, 60 °C temperature, 60 min reaction time and 400 rpm stirrer speed. The highest yield of biodiesel after transesterification and purification processes was 76.62% with 0.07% FFA and 96% ester content. The biodiesel produced was favorable as compared to EN 14214 and ASTM 6751 standard. This study shows a potential exploitation of SPO as a new feedstock for the production of biodiesel.
Bibliography:http://dx.doi.org/10.1016/j.biortech.2010.05.045
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2010.05.045