A Milstein Scheme for SPDEs
This article studies an infinite-dimensional analog of Milstein’s scheme for finite-dimensional stochastic ordinary differential equations (SODEs). The Milstein scheme is known to be impressively efficient for SODEs which fulfill a certain commutativity type condition. This article introduces the in...
Saved in:
Published in | Foundations of computational mathematics Vol. 15; no. 2; pp. 313 - 362 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.04.2015
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1615-3375 1615-3383 |
DOI | 10.1007/s10208-015-9247-y |
Cover
Loading…
Summary: | This article studies an infinite-dimensional analog of Milstein’s scheme for finite-dimensional stochastic ordinary differential equations (SODEs). The Milstein scheme is known to be impressively efficient for SODEs which fulfill a certain commutativity type condition. This article introduces the infinite-dimensional analog of this commutativity type condition and observes that a certain class of semilinear stochastic partial differential equation (SPDEs) with multiplicative trace class noise naturally fulfills the resulting infinite-dimensional commutativity condition. In particular, a suitable infinite-dimensional analog of Milstein’s algorithm can be simulated efficiently for such SPDEs and requires less computational operations and random variables than previously considered algorithms for simulating such SPDEs. The analysis is supported by numerical results for a stochastic heat equation, stochastic reaction diffusion equations and a stochastic Burgers equation, showing significant computational savings. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1615-3375 1615-3383 |
DOI: | 10.1007/s10208-015-9247-y |