Localization of cGMP-dependent protein kinase type II in rat brain

In brain, signaling pathways initiated by atrial natriuretic peptide, or transmitters which stimulate nitric oxide synthesis, increase cGMP as their second messenger. One important class of target molecules for cGMP is cGMP-dependent protein kinases, and in the present study, biochemical and immunoc...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 108; no. 1; pp. 27 - 49
Main Authors de Vente, J, Asan, E, Gambaryan, S, Markerink-van Ittersum, M, Axer, H, Gallatz, K, Lohmann, S.M, Palkovits, M
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2001
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In brain, signaling pathways initiated by atrial natriuretic peptide, or transmitters which stimulate nitric oxide synthesis, increase cGMP as their second messenger. One important class of target molecules for cGMP is cGMP-dependent protein kinases, and in the present study, biochemical and immunocytochemical analyses demonstrate the widespread distribution of type II cGMP-dependent protein kinase in rat brain, from the cerebral cortex to the brainstem and cerebellum. Also, colocalization of cGMP-dependent protein kinase type II with its activator, cGMP, was found in several brain regions examined after in vitro stimulation of brain slices with sodium nitroprusside. In western blots, cGMP-dependent protein kinase type II was observed in all brain regions examined, although cerebellar cortex and pituitary contained comparatively less of the kinase. Immunocytochemistry revealed cGMP-dependent protein kinase type II in certain neurons, and occasionally in putative oligodendrocytes and astrocytes, however, its most striking and predominant localization was in neuropil. Electron microscopy examination of neuropil in the medial habenula showed localization of the kinase in both axon terminals and dendrites. As a membrane-associated protein, cGMP-dependent protein kinase type II often appeared to be transported to cell processes to a greater extent than being retained in the cell body. Thus, immunocytochemical labeling of cGMP-dependent protein kinase type II often did not coincide with the localization of kinase mRNA previously observed by others using in situ hybridization. We conclude that in contrast to cGMP-dependent protein kinase type I, which has a very restricted localization to cerebellar Purkinje cells and a few other sites, cGMP-dependent protein kinase type II is a very ubiquitous brain protein kinase and thus a more likely candidate for relaying myriad cGMP effects in brain requiring protein phosphorylation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0306-4522
1873-7544
DOI:10.1016/S0306-4522(01)00401-8