Generalized Transfer Subspace Learning Through Low-Rank Constraint
It is expensive to obtain labeled real-world visual data for use in training of supervised algorithms. Therefore, it is valuable to leverage existing databases of labeled data. However, the data in the source databases is often obtained under conditions that differ from those in the new task. Transf...
Saved in:
Published in | International journal of computer vision Vol. 109; no. 1-2; pp. 74 - 93 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.08.2014
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | It is expensive to obtain labeled real-world visual data for use in training of supervised algorithms. Therefore, it is valuable to leverage existing databases of labeled data. However, the data in the source databases is often obtained under conditions that differ from those in the new task. Transfer learning provides techniques for transferring learned knowledge from a
source
domain to a
target
domain by finding a mapping between them. In this paper, we discuss a method for projecting both source and target data to a generalized subspace where each target sample can be represented by some combination of source samples. By employing a low-rank constraint during this transfer, the structure of source and target domains are preserved. This approach has three benefits. First, good alignment between the domains is ensured through the use of only relevant data in some subspace of the source domain in reconstructing the data in the target domain. Second, the discriminative power of the source domain is naturally passed on to the target domain. Third, noisy information will be filtered out during knowledge transfer. Extensive experiments on synthetic data, and important computer vision problems such as face recognition application and visual domain adaptation for object recognition demonstrate the superiority of the proposed approach over the existing, well-established methods. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0920-5691 1573-1405 |
DOI: | 10.1007/s11263-014-0696-6 |