Coronavirus Infection Induces DNA Replication Stress Partly through Interaction of Its Nonstructural Protein 13 with the p125 Subunit of DNA Polymerase δ

Perturbation of cell cycle regulation is a characteristic feature of infection by many DNA and RNA viruses, including Coronavirus infectious bronchitis virus (IBV). IBV infection was shown to induce cell cycle arrest at both S and G2/M phases for the enhancement of viral replication and progeny prod...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 286; no. 45; pp. 39546 - 39559
Main Authors Xu, Ling Hui, Huang, Mei, Fang, Shou Guo, Liu, Ding Xiang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 11.11.2011
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Perturbation of cell cycle regulation is a characteristic feature of infection by many DNA and RNA viruses, including Coronavirus infectious bronchitis virus (IBV). IBV infection was shown to induce cell cycle arrest at both S and G2/M phases for the enhancement of viral replication and progeny production. However, the underlying mechanisms are not well explored. In this study we show that activation of cellular DNA damage response is one of the mechanisms exploited by Coronavirus to induce cell cycle arrest. An ATR-dependent cellular DNA damage response was shown to be activated by IBV infection. Suppression of the ATR kinase activity by chemical inhibitors and siRNA-mediated knockdown of ATR reduced the IBV-induced ATR signaling and inhibited the replication of IBV. Furthermore, yeast two-hybrid screens and subsequent biochemical and functional studies demonstrated that interaction between Coronavirus nsp13 and DNA polymerase δ induced DNA replication stress in IBV-infected cells. These findings indicate that the ATR signaling activated by IBV replication contributes to the IBV-induced S-phase arrest and is required for efficient IBV replication and progeny production.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M111.242206