Study on Coated Zr-V-Cr Getter with Pore Gradient Structure for Hydrogen Masers

As the core component of satellite navigation, the hydrogen maser needs a high vacuum environment to maintain the stability of the frequency signal. The getter pump, composed of various non-evaporable getters, plays an important role in maintaining the high vacuum. In this paper, the Zr100-xCux (x =...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 17; p. 6147
Main Authors Zhang, Jiale, Song, Huihui, Fang, Jinyu, Hou, Xueling, Huang, Shuiming, Xiang, Jie, Lu, Tao, Zhou, Chao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As the core component of satellite navigation, the hydrogen maser needs a high vacuum environment to maintain the stability of the frequency signal. The getter pump, composed of various non-evaporable getters, plays an important role in maintaining the high vacuum. In this paper, the Zr100-xCux (x = 0, 2, 4, 6)/Zr56.97V35.85Cr7.18 getter was studied and the contradiction between sorption performance and mechanical properties was solved. The Zr-V-Cr getter, a better candidate for getter pump, exists for problems which will destroy the high vacuum and affect the service life of the hydrogen maser. To solve the problem of dropping powder from Zr-V-Cr getter, Zr-Cu films were coated on the surface of Zr-V-Cr matrix to obtain the pore gradient structure. After vacuum sintering, the interface showed gradient structure and network change in pore structure from Zr-Cu film to Zr-V-Cr matrix. These characteristic structures made Zr-V-Cr getter have good absorption properties, which is better than a similar product of SAES company and mechanical properties. Because the Zr-Cu film on Zr-V-Cr matrix effectively prevented dropping powders from the matrix, (Zr-Cu)/(Zr-V-Cr) getter solved the problem of dropping powder. The self-developed new getter with pore gradient structure is of great significance for maintaining the high vacuum of hydrogen maser in the future.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15176147