Influence of Mechanical Fatigue at Different States of Charge on Pouch-Type Li-Ion Batteries

Since flexible devices are being used in various states of charge (SoCs), it is important to investigate SoCs that are durable against external mechanical deformations. In this study, the effects of a mechanical fatigue test under various initial SoCs of batteries were investigated. More specificall...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 16; p. 5557
Main Authors Kim, Jin-Yeong, Kim, Jae-Yeon, Kim, Yu-Jin, Lee, Jaeheon, Cho, Kwon-Koo, Kim, Jae-Hun, Byeon, Jai-Won
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Since flexible devices are being used in various states of charge (SoCs), it is important to investigate SoCs that are durable against external mechanical deformations. In this study, the effects of a mechanical fatigue test under various initial SoCs of batteries were investigated. More specifically, ultrathin pouch-type Li-ion polymer batteries with different initial SoCs were subjected to repeated torsional stress and then galvanostatically cycled 200 times. The cycle performance of the cells after the mechanical test was compared to investigate the effect of the initial SoCs. Electrochemical impedance spectroscopy was employed to analyze the interfacial resistance changes of the anode and cathode in the cycled cells. When the initial SoC was at 70% before mechanical deformation, both electrodes well maintained their initial state during the mechanical fatigue test and the cell capacity was well retained during the cycling test. This indicates that the cells could well endure mechanical fatigue stress when both electrodes had moderate lithiation states. With initial SoCs at 0% and 100%, the batteries subjected to the mechanical test exhibited relatively drastic capacity fading. This indicates that the cells are vulnerable to mechanical fatigue stress when both electrodes have high lithiation states. Furthermore, it is noted that the stress accumulated inside the batteries caused by mechanical fatigue can act as an accelerated degradation factor during cycling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15165557