Aging Face Recognition: A Hierarchical Learning Model Based on Local Patterns Selection

Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 25; no. 5; pp. 2146 - 2154
Main Authors Li, Zhifeng, Gong, Dihong, Li, Xuelong, Tao, Dacheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2016.2535284

Cover

Loading…
Abstract Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appearance is subject to significant change during the aging process. In this paper, we propose to solve the problem with a hierarchical model based on two-level learning. At the first level, effective features are learned from low-level microstructures, based on our new feature descriptor called local pattern selection (LPS). The proposed LPS descriptor greedily selects low-level discriminant patterns in a way, such that intra-user dissimilarity is minimized. At the second level, higher level visual information is further refined based on the output from the first level. To evaluate the performance of our new method, we conduct extensive experiments on the MORPH data set (the largest face aging data set available in the public domain), which show a significant improvement in accuracy over the state-of-the-art methods.
AbstractList Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appearance is subject to significant change during the aging process. In this paper, we propose to solve the problem with a hierarchical model based on two-level learning. At the first level, effective features are learned from low-level microstructures, based on our new feature descriptor called local pattern selection (LPS). The proposed LPS descriptor greedily selects low-level discriminant patterns in a way, such that intra-user dissimilarity is minimized. At the second level, higher level visual information is further refined based on the output from the first level. To evaluate the performance of our new method, we conduct extensive experiments on the MORPH data set (the largest face aging data set available in the public domain), which show a significant improvement in accuracy over the state-of-the-art methods.
Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appearance is subject to significant change during the aging process. In this paper, we propose to solve the problem with a hierarchical model based on two-level learning. At the first level, effective features are learned from low-level microstructures, based on our new feature descriptor called local pattern selection (LPS). The proposed LPS descriptor greedily selects low-level discriminant patterns in a way, such that intra-user dissimilarity is minimized. At the second level, higher level visual information is further refined based on the output from the first level. To evaluate the performance of our new method, we conduct extensive experiments on the MORPH data set (the largest face aging data set available in the public domain), which show a significant improvement in accuracy over the state-of-the-art methods.Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appearance is subject to significant change during the aging process. In this paper, we propose to solve the problem with a hierarchical model based on two-level learning. At the first level, effective features are learned from low-level microstructures, based on our new feature descriptor called local pattern selection (LPS). The proposed LPS descriptor greedily selects low-level discriminant patterns in a way, such that intra-user dissimilarity is minimized. At the second level, higher level visual information is further refined based on the output from the first level. To evaluate the performance of our new method, we conduct extensive experiments on the MORPH data set (the largest face aging data set available in the public domain), which show a significant improvement in accuracy over the state-of-the-art methods.
Author Dacheng Tao
Xuelong Li
Zhifeng Li
Dihong Gong
Author_xml – sequence: 1
  givenname: Zhifeng
  surname: Li
  fullname: Li, Zhifeng
– sequence: 2
  givenname: Dihong
  surname: Gong
  fullname: Gong, Dihong
– sequence: 3
  givenname: Xuelong
  surname: Li
  fullname: Li, Xuelong
– sequence: 4
  givenname: Dacheng
  surname: Tao
  fullname: Tao, Dacheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26930681$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtrHDEUhUVwiB9JHzAYQRo3s9HVY6RxtzF-wYaYxCHloNHcXcvMSo40W-TfW8OuXbhwUCGBvnOke84h2QsxICGfgc0AWPP17uZ2xhnUM66E4ka-IwfQSKgYk3yvnJnSlQbZ7JPDnB8YA6mg_kD2ed0IVhs4IH_mKx9W9NI6pD_RxVXwo4_hjM7ptcdkk7v3zg50gTaFifweexzoN5uxpzHQRZxub-04YgqZ_sIB3WTwkbxf2iHjp91-RH5fXtydX1eLH1c35_NF5aQxYyWZ4EIA9K7rO8uVaix2jkkpVG-tAtuxDo1ryiSdAw1cG8c5d1pJt7QoxBE53fo-pvh3g3ls1z47HAYbMG5yC6aY1kZD_X9U65JdWRP65RX6EDcplEEKZTQTsjYTdbKjNt0a-_Yx-bVN_9rndAvAtoBLMeeEyxcEWDsV2JYC26nAdldgkdSvJM6Pdkp0TNYPbwmPt0KPiC_vaMnLT6R4ApXxpKA
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_patcog_2018_09_010
crossref_primary_10_1109_TIP_2016_2639438
crossref_primary_10_1007_s13369_017_2493_3
crossref_primary_10_1117_1_JEI_27_2_023029
crossref_primary_10_1111_exsy_12503
crossref_primary_10_1109_LSP_2017_2661983
crossref_primary_10_1007_s11063_018_9930_5
crossref_primary_10_1007_s10462_018_9661_z
crossref_primary_10_1093_comjnl_bxaa134
crossref_primary_10_1007_s11042_022_12783_6
crossref_primary_10_1007_s11633_020_1244_1
crossref_primary_10_1016_j_neucom_2018_12_003
crossref_primary_10_1038_s42255_024_01093_w
crossref_primary_10_1109_TIFS_2022_3142998
crossref_primary_10_1016_j_patcog_2017_10_036
crossref_primary_10_1016_j_patcog_2017_10_015
crossref_primary_10_1007_s12530_018_9256_6
crossref_primary_10_1016_j_imavis_2018_05_003
crossref_primary_10_1016_j_jvcir_2021_103393
crossref_primary_10_1016_j_patcog_2017_08_005
crossref_primary_10_1109_LSP_2016_2555480
crossref_primary_10_1109_TCSVT_2021_3096061
crossref_primary_10_1016_j_neucom_2023_03_059
crossref_primary_10_1088_1742_6596_1339_1_012006
crossref_primary_10_1016_j_patcog_2019_04_028
crossref_primary_10_1109_TPAMI_2020_3011426
crossref_primary_10_1007_s11042_020_09261_2
crossref_primary_10_1145_3472810
crossref_primary_10_1109_JIOT_2017_2761801
crossref_primary_10_1016_j_neucom_2016_10_010
crossref_primary_10_1016_j_eswa_2021_114786
crossref_primary_10_1016_j_knosys_2019_05_033
crossref_primary_10_1093_comjnl_bxab212
crossref_primary_10_1049_iet_bmt_2019_0001
crossref_primary_10_1109_ACCESS_2024_3424933
crossref_primary_10_1109_TPAMI_2023_3279378
crossref_primary_10_1016_j_jvcir_2021_103423
crossref_primary_10_1117_1_JEI_26_5_053011
crossref_primary_10_1007_s11042_023_15962_1
crossref_primary_10_1007_s11042_019_7741_y
crossref_primary_10_1109_ACCESS_2021_3063819
crossref_primary_10_1016_j_eswa_2016_10_042
Cites_doi 10.1109/TPAMI.2013.112
10.1109/FGR.2006.78
10.1504/IJBM.2010.030415
10.1109/TNNLS.2013.2293418
10.1109/ICIP.2009.5413956
10.1109/CVPR.2005.177
10.1109/TIFS.2007.897247
10.1109/CVPR.1994.323894
10.1145/2647868.2655020
10.1109/ICCV.2013.188
10.1109/TPAMI.2014.2316826
10.1109/34.598228
10.1145/882262.882344
10.1109/TPAMI.2010.14
10.1109/TIFS.2009.2038751
10.1109/TCSVT.2009.2022694
10.1109/CVPR.2015.7298846
10.1109/34.598235
10.1109/TIP.2008.924280
10.1007/978-3-540-24670-1_36
10.5244/C.27.8
10.1109/TPAMI.2008.174
10.1109/CVPR.2013.389
10.1109/TPAMI.2011.112
10.1109/CVPR.2005.202
10.1109/34.993553
10.1109/TPAMI.2005.188
10.1109/TIP.2014.2315920
10.1109/TMM.2008.921847
10.1109/CVPR.2011.5995324
10.1109/TPAMI.2010.180
10.1109/TIFS.2014.2363792
10.1109/ICCV.2013.398
10.1023/B:VISI.0000029664.99615.94
10.1109/TIP.2015.2426413
10.1109/CVPR.2014.244
10.1109/ICIP.2009.5414103
10.1109/TPAMI.2015.2435740
10.1109/TPAMI.2008.79
10.1109/CVPR.2010.5539992
10.1007/s11432-013-4856-z
10.1109/TIP.2015.2412377
10.1109/TPAMI.2002.1017623
10.1109/TSMCB.2003.817091
10.1109/ICCV.2007.4409050
10.1109/TIP.2006.881993
10.1109/TPAMI.2007.70733
10.1109/TPAMI.2009.39
10.1109/CVPR.2009.5206849
10.1109/TNNLS.2014.2308519
10.1109/TPAMI.2004.57
10.1016/j.jvlc.2009.01.011
10.1109/TIP.2015.2469093
10.1109/TIFS.2011.2156787
10.1109/ICCV.2013.357
10.1016/j.neucom.2012.08.030
10.1109/IJCB.2011.6117547
10.1109/TPAMI.2006.244
10.1007/978-3-642-33868-7_19
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TIP.2016.2535284
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Libary (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
MEDLINE - Academic
Technology Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2154
ExternalDocumentID 4046288161
26930681
10_1109_TIP_2016_2535284
7420684
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61103164
  funderid: 10.13039/501100001809
– fundername: Australian Research Council
  grantid: DP-140102164; FT-130101457
  funderid: 10.13039/501100000923
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2014A030313688
– fundername: Key Laboratory of Human-Machine Intelligence-Synergy Systems through the Chinese Academy of Sciences
  funderid: 10.13039/501100002367
– fundername: Shenzhen Basic Research Program
  grantid: JCYJ20120617114614438
– fundername: project MMT-8115038 of the Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c488t-40323311dcbdba2559aebc04435daa51ab0be8c9105bc171278c222c754cfae33
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Sep 05 05:05:05 EDT 2025
Thu Sep 04 19:35:02 EDT 2025
Sun Jun 29 12:41:10 EDT 2025
Mon Jul 21 05:47:59 EDT 2025
Tue Jul 01 02:03:06 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Tue Aug 26 16:43:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Face recognition
feature descriptor
aging faces
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-40323311dcbdba2559aebc04435daa51ab0be8c9105bc171278c222c754cfae33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://ir.opt.ac.cn/handle/181661/28080
PMID 26930681
PQID 1787034686
PQPubID 85429
PageCount 9
ParticipantIDs crossref_primary_10_1109_TIP_2016_2535284
proquest_journals_1787034686
crossref_citationtrail_10_1109_TIP_2016_2535284
ieee_primary_7420684
proquest_miscellaneous_1825568716
proquest_miscellaneous_1779414146
pubmed_primary_26930681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref59
ref58
ref14
ref53
ref52
ref55
ref54
ref10
suo (ref16) 2009
ref17
ref19
ref18
(ref31) 0
li (ref67) 2009; 31
ref50
kwon (ref7) 1994
ref45
ref48
ref47
ref42
ref41
ref43
suo (ref15) 2010; 32
ref49
wolf (ref51) 2008
chen (ref44) 2014
ref8
ref9
ref4
ref3
ref40
ref35
ref34
ref30
zhou (ref13) 2005
ref33
chen (ref63) 2012
sun (ref46) 2014
caifeng (ref39) 2008
ref2
ref1
ref38
ref71
guo (ref5) 2008; 17
mu (ref6) 2009
ref68
ref24
ref23
ref26
ref69
ref25
ref64
ref20
ref66
ref22
lei (ref37) 2014; 36
ref65
ref21
(ref36) 0
wang (ref11) 2006; 3
ref28
ref27
ref29
ref60
ref62
wang (ref32) 2004
ref61
lu (ref70) 2015; 10
References_xml – volume: 36
  start-page: 289
  year: 2014
  ident: ref37
  article-title: Learning discriminant face descriptor
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.112
– ident: ref30
  doi: 10.1109/FGR.2006.78
– ident: ref1
  doi: 10.1504/IJBM.2010.030415
– ident: ref53
  doi: 10.1109/TNNLS.2013.2293418
– ident: ref24
  doi: 10.1109/ICIP.2009.5413956
– ident: ref41
  doi: 10.1109/CVPR.2005.177
– ident: ref64
  doi: 10.1109/TIFS.2007.897247
– start-page: 762
  year: 1994
  ident: ref7
  article-title: Age classification from facial images
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
  doi: 10.1109/CVPR.1994.323894
– ident: ref28
  doi: 10.1145/2647868.2655020
– ident: ref71
  doi: 10.1109/ICCV.2013.188
– ident: ref59
  doi: 10.1109/TPAMI.2014.2316826
– ident: ref27
  doi: 10.1109/34.598228
– ident: ref17
  doi: 10.1145/882262.882344
– ident: ref18
  doi: 10.1109/TPAMI.2010.14
– ident: ref19
  doi: 10.1109/TIFS.2009.2038751
– ident: ref68
  doi: 10.1109/TCSVT.2009.2022694
– ident: ref49
  doi: 10.1109/CVPR.2015.7298846
– start-page: 259
  year: 2004
  ident: ref32
  article-title: Random sampling LDA for face recognition
  publication-title: Proc CVPR
– year: 0
  ident: ref31
  publication-title: FaceVACS Software Developer Kit
– ident: ref50
  doi: 10.1109/34.598235
– volume: 17
  start-page: 1178
  year: 2008
  ident: ref5
  article-title: Image-based human age estimation by manifold learning and locally adjusted robust regression
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.924280
– ident: ref25
  doi: 10.1007/978-3-540-24670-1_36
– ident: ref52
  doi: 10.5244/C.27.8
– volume: 31
  start-page: 755
  year: 2009
  ident: ref67
  article-title: Nonparametric discriminant analysis for face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.174
– ident: ref58
  doi: 10.1109/CVPR.2013.389
– ident: ref66
  doi: 10.1109/TPAMI.2011.112
– ident: ref65
  doi: 10.1109/CVPR.2005.202
– ident: ref14
  doi: 10.1109/34.993553
– ident: ref22
  doi: 10.1109/TPAMI.2005.188
– ident: ref57
  doi: 10.1109/TIP.2014.2315920
– ident: ref3
  doi: 10.1109/TMM.2008.921847
– ident: ref38
  doi: 10.1109/CVPR.2011.5995324
– ident: ref42
  doi: 10.1109/TPAMI.2010.180
– volume: 10
  start-page: 79
  year: 2015
  ident: ref70
  article-title: Reconstruction-based metric learning for unconstrained face verification
  publication-title: IEEE Trans Inf Forensics Security
  doi: 10.1109/TIFS.2014.2363792
– ident: ref62
  doi: 10.1109/ICCV.2013.398
– ident: ref23
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref56
  doi: 10.1109/TIP.2015.2426413
– ident: ref47
  doi: 10.1109/CVPR.2014.244
– year: 0
  ident: ref36
  publication-title: FG-Net Aging Database
– start-page: 1
  year: 2008
  ident: ref51
  article-title: Descriptor based methods in the wild
  publication-title: Proc Faces in Real-Life Images Workshop
– ident: ref9
  doi: 10.1109/ICIP.2009.5414103
– ident: ref61
  doi: 10.1109/TPAMI.2015.2435740
– ident: ref69
  doi: 10.1109/TPAMI.2008.79
– ident: ref45
  doi: 10.1109/CVPR.2010.5539992
– ident: ref55
  doi: 10.1007/s11432-013-4856-z
– ident: ref48
  doi: 10.1109/TIP.2015.2412377
– ident: ref21
  doi: 10.1109/TPAMI.2002.1017623
– start-page: 622
  year: 2009
  ident: ref16
  article-title: Learning long term face aging patterns from partially dense aging databases
  publication-title: Proc 12th ICCV
– start-page: 768
  year: 2014
  ident: ref44
  article-title: Cross-age reference coding for age-invariant face recognition and retrieval
  publication-title: Proc ECCV
– ident: ref8
  doi: 10.1109/TSMCB.2003.817091
– ident: ref12
  doi: 10.1109/ICCV.2007.4409050
– start-page: 541
  year: 2005
  ident: ref13
  article-title: Image based regression using boosting method
  publication-title: Proc 10th ICCV
– ident: ref10
  doi: 10.1109/TIP.2006.881993
– volume: 3
  start-page: 913
  year: 2006
  ident: ref11
  article-title: Age simulation for face recognition
  publication-title: Proc 18th ICPR
– start-page: 566
  year: 2012
  ident: ref63
  article-title: Bayesian face revisited: A joint formulation
  publication-title: Proc ECCV
– ident: ref4
  doi: 10.1109/TPAMI.2007.70733
– volume: 32
  start-page: 385
  year: 2010
  ident: ref15
  article-title: A compositional and dynamic model for face aging
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.39
– ident: ref40
  doi: 10.1109/CVPR.2009.5206849
– ident: ref54
  doi: 10.1109/TNNLS.2014.2308519
– ident: ref29
  doi: 10.1109/TPAMI.2004.57
– ident: ref2
  doi: 10.1016/j.jvlc.2009.01.011
– start-page: 1
  year: 2008
  ident: ref39
  article-title: Learning discriminative LBP-histogram bins for facial expression recognition
  publication-title: Proc BMVC
– ident: ref60
  doi: 10.1109/TIP.2015.2469093
– ident: ref20
  doi: 10.1109/TIFS.2011.2156787
– ident: ref43
  doi: 10.1109/ICCV.2013.357
– ident: ref33
  doi: 10.1016/j.neucom.2012.08.030
– ident: ref34
  doi: 10.1109/IJCB.2011.6117547
– ident: ref26
  doi: 10.1109/TPAMI.2006.244
– start-page: 112
  year: 2009
  ident: ref6
  article-title: Human age estimation using bio-inspired features
  publication-title: Proc CVPR
– ident: ref35
  doi: 10.1007/978-3-642-33868-7_19
– year: 2014
  ident: ref46
  article-title: Deeply learned face representations are sparse, selective, and robust
SSID ssj0014516
Score 2.4939082
Snippet Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2146
SubjectTerms Aging
Aging - physiology
aging faces
Algorithms
Biometric Identification - methods
Databases, Factual
Encoding
Face
Face - diagnostic imaging
Face recognition
Facial
feature descriptor
Feature extraction
Humans
Image coding
Image Processing, Computer-Assisted - methods
Learning
Machine Learning
Matching
Mathematical models
Tasks
Transaction processing
Visual
Visualization
Title Aging Face Recognition: A Hierarchical Learning Model Based on Local Patterns Selection
URI https://ieeexplore.ieee.org/document/7420684
https://www.ncbi.nlm.nih.gov/pubmed/26930681
https://www.proquest.com/docview/1787034686
https://www.proquest.com/docview/1779414146
https://www.proquest.com/docview/1825568716
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3IolEebQpGReqlEdu2N8-K2VKwWBBVqQXCL_FpUdZVU3d1Lf31nHCdqK4qqXCxlkjgaT-abzHg-gPemKLWSaEjKyiyW1iVxiY4gzmmfKMYTtvSJ9utP2fROXj6kD2tw0u-Fcc754jM3oKHP5dvGrOhX2RDDOJ4Vch3WMXBr92r1GQMinPWZzTSPc4T9XUqSl8Pbixuq4coGI9_LhKh4RsQAmBXiD2_k6VX-jTS9x5lswXU317bQ5NtgtdQD8_OvNo7_-zLb8DJATzZu18orWHP1DmwFGMqCkS92YPO3HoW7cD8mGiM2Ucaxz121UVOfsjGbfqXdy55MZc5Co9ZHRuxqc3aG3tGypmZX5CzZjW_jWS_YF8-7gzfYg7vJ-e3HaRzYGGKDRr7EQDMZJYkQ1mirFUUiymnDJeItq1QqlObaFQbhR6qNyMUoLwyCD5On0syUS5J92Kib2r0B5kpe6sJqYWaJ1JIrwXFMvOeZ4uUsjWDYaaUyoVU5MWbMKx-y8LJClVak0iqoNIIP_RXf2zYdz8jukjZ6uaCICA47xVfBjheVoO9ZIrMii-C4P40WSGkVVbtmRTL4TRN4PCdT-FZvGJxG8LpdVP3zu7X49ul5HcALmn1bZHkIG8sfK_cOgdBSH3kL-AWFc_85
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcgAOFFoKhgKLxAUJJ954_VhuKSJKIakqSEVv1r6CEJFdNcmFX8_Mem0VBBXyZSWP7V3Nzs6M5_EBvDal1EqgICkr8lhYl8YSFUFcUJ0o-hNW-kD7_DSfnouPF9nFDrzta2Gccz75zA1o6GP5tjFb-lU2RDcuyUtxC26j3heyrdbqYwYEOetjm1kRF2j4d0HJRA4XJ2eUxZUPRr6bCYHxjAgDMC_5b_rIA6z829b0OmeyB_Nutm2qyY_BdqMH5ucfjRz_dzkP4H4wPtm43S0PYcfV-7AXDFEWxHy9D_eudSk8gK9jAjJiE2Uc-9zlGzX1OzZm0-9Uv-zhVFYstGr9xghfbcWOUT9a1tRsRuqSnflGnvWaffHIO_iCR3A--bB4P40DHkNsUMw36GqmozTl3BpttSJfRDltEoEWl1Uq40on2pUGDZBMG17wUVEaND9MkQmzVC5ND2G3bmr3BJiTidSl1dwsU6FFoniCY0I-z1Uil1kEw44rlQnNygkzY1V5pyWRFbK0IpZWgaURvOmfuGwbddxAe0Dc6OkCIyI46hhfBUleV5xOtFTkZR7Bq_42yiAFVlTtmi3R4KnG8bqJpvTN3tA9jeBxu6n673d78enf5_US7kwX81k1Ozn99Azu0kralMsj2N1cbd1zNIs2-oWXhl8QLwKY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aging+Face+Recognition%3A+A+Hierarchical+Learning+Model+Based+on+Local+Patterns+Selection&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Li%2C+Zhifeng&rft.au=Gong%2C+Dihong&rft.au=Li%2C+Xuelong&rft.au=Tao%2C+Dacheng&rft.date=2016-05-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=25&rft.issue=5&rft.spage=2146&rft.epage=2154&rft_id=info:doi/10.1109%2FTIP.2016.2535284&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2016_2535284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon