Aging Face Recognition: A Hierarchical Learning Model Based on Local Patterns Selection
Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appe...
Saved in:
Published in | IEEE transactions on image processing Vol. 25; no. 5; pp. 2146 - 2154 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1057-7149 1941-0042 1941-0042 |
DOI | 10.1109/TIP.2016.2535284 |
Cover
Loading…
Abstract | Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appearance is subject to significant change during the aging process. In this paper, we propose to solve the problem with a hierarchical model based on two-level learning. At the first level, effective features are learned from low-level microstructures, based on our new feature descriptor called local pattern selection (LPS). The proposed LPS descriptor greedily selects low-level discriminant patterns in a way, such that intra-user dissimilarity is minimized. At the second level, higher level visual information is further refined based on the output from the first level. To evaluate the performance of our new method, we conduct extensive experiments on the MORPH data set (the largest face aging data set available in the public domain), which show a significant improvement in accuracy over the state-of-the-art methods. |
---|---|
AbstractList | Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appearance is subject to significant change during the aging process. In this paper, we propose to solve the problem with a hierarchical model based on two-level learning. At the first level, effective features are learned from low-level microstructures, based on our new feature descriptor called local pattern selection (LPS). The proposed LPS descriptor greedily selects low-level discriminant patterns in a way, such that intra-user dissimilarity is minimized. At the second level, higher level visual information is further refined based on the output from the first level. To evaluate the performance of our new method, we conduct extensive experiments on the MORPH data set (the largest face aging data set available in the public domain), which show a significant improvement in accuracy over the state-of-the-art methods. Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appearance is subject to significant change during the aging process. In this paper, we propose to solve the problem with a hierarchical model based on two-level learning. At the first level, effective features are learned from low-level microstructures, based on our new feature descriptor called local pattern selection (LPS). The proposed LPS descriptor greedily selects low-level discriminant patterns in a way, such that intra-user dissimilarity is minimized. At the second level, higher level visual information is further refined based on the output from the first level. To evaluate the performance of our new method, we conduct extensive experiments on the MORPH data set (the largest face aging data set available in the public domain), which show a significant improvement in accuracy over the state-of-the-art methods.Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appearance is subject to significant change during the aging process. In this paper, we propose to solve the problem with a hierarchical model based on two-level learning. At the first level, effective features are learned from low-level microstructures, based on our new feature descriptor called local pattern selection (LPS). The proposed LPS descriptor greedily selects low-level discriminant patterns in a way, such that intra-user dissimilarity is minimized. At the second level, higher level visual information is further refined based on the output from the first level. To evaluate the performance of our new method, we conduct extensive experiments on the MORPH data set (the largest face aging data set available in the public domain), which show a significant improvement in accuracy over the state-of-the-art methods. |
Author | Dacheng Tao Xuelong Li Zhifeng Li Dihong Gong |
Author_xml | – sequence: 1 givenname: Zhifeng surname: Li fullname: Li, Zhifeng – sequence: 2 givenname: Dihong surname: Gong fullname: Gong, Dihong – sequence: 3 givenname: Xuelong surname: Li fullname: Li, Xuelong – sequence: 4 givenname: Dacheng surname: Tao fullname: Tao, Dacheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26930681$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtrHDEUhUVwiB9JHzAYQRo3s9HVY6RxtzF-wYaYxCHloNHcXcvMSo40W-TfW8OuXbhwUCGBvnOke84h2QsxICGfgc0AWPP17uZ2xhnUM66E4ka-IwfQSKgYk3yvnJnSlQbZ7JPDnB8YA6mg_kD2ed0IVhs4IH_mKx9W9NI6pD_RxVXwo4_hjM7ptcdkk7v3zg50gTaFifweexzoN5uxpzHQRZxub-04YgqZ_sIB3WTwkbxf2iHjp91-RH5fXtydX1eLH1c35_NF5aQxYyWZ4EIA9K7rO8uVaix2jkkpVG-tAtuxDo1ryiSdAw1cG8c5d1pJt7QoxBE53fo-pvh3g3ls1z47HAYbMG5yC6aY1kZD_X9U65JdWRP65RX6EDcplEEKZTQTsjYTdbKjNt0a-_Yx-bVN_9rndAvAtoBLMeeEyxcEWDsV2JYC26nAdldgkdSvJM6Pdkp0TNYPbwmPt0KPiC_vaMnLT6R4ApXxpKA |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1016_j_patcog_2018_09_010 crossref_primary_10_1109_TIP_2016_2639438 crossref_primary_10_1007_s13369_017_2493_3 crossref_primary_10_1117_1_JEI_27_2_023029 crossref_primary_10_1111_exsy_12503 crossref_primary_10_1109_LSP_2017_2661983 crossref_primary_10_1007_s11063_018_9930_5 crossref_primary_10_1007_s10462_018_9661_z crossref_primary_10_1093_comjnl_bxaa134 crossref_primary_10_1007_s11042_022_12783_6 crossref_primary_10_1007_s11633_020_1244_1 crossref_primary_10_1016_j_neucom_2018_12_003 crossref_primary_10_1038_s42255_024_01093_w crossref_primary_10_1109_TIFS_2022_3142998 crossref_primary_10_1016_j_patcog_2017_10_036 crossref_primary_10_1016_j_patcog_2017_10_015 crossref_primary_10_1007_s12530_018_9256_6 crossref_primary_10_1016_j_imavis_2018_05_003 crossref_primary_10_1016_j_jvcir_2021_103393 crossref_primary_10_1016_j_patcog_2017_08_005 crossref_primary_10_1109_LSP_2016_2555480 crossref_primary_10_1109_TCSVT_2021_3096061 crossref_primary_10_1016_j_neucom_2023_03_059 crossref_primary_10_1088_1742_6596_1339_1_012006 crossref_primary_10_1016_j_patcog_2019_04_028 crossref_primary_10_1109_TPAMI_2020_3011426 crossref_primary_10_1007_s11042_020_09261_2 crossref_primary_10_1145_3472810 crossref_primary_10_1109_JIOT_2017_2761801 crossref_primary_10_1016_j_neucom_2016_10_010 crossref_primary_10_1016_j_eswa_2021_114786 crossref_primary_10_1016_j_knosys_2019_05_033 crossref_primary_10_1093_comjnl_bxab212 crossref_primary_10_1049_iet_bmt_2019_0001 crossref_primary_10_1109_ACCESS_2024_3424933 crossref_primary_10_1109_TPAMI_2023_3279378 crossref_primary_10_1016_j_jvcir_2021_103423 crossref_primary_10_1117_1_JEI_26_5_053011 crossref_primary_10_1007_s11042_023_15962_1 crossref_primary_10_1007_s11042_019_7741_y crossref_primary_10_1109_ACCESS_2021_3063819 crossref_primary_10_1016_j_eswa_2016_10_042 |
Cites_doi | 10.1109/TPAMI.2013.112 10.1109/FGR.2006.78 10.1504/IJBM.2010.030415 10.1109/TNNLS.2013.2293418 10.1109/ICIP.2009.5413956 10.1109/CVPR.2005.177 10.1109/TIFS.2007.897247 10.1109/CVPR.1994.323894 10.1145/2647868.2655020 10.1109/ICCV.2013.188 10.1109/TPAMI.2014.2316826 10.1109/34.598228 10.1145/882262.882344 10.1109/TPAMI.2010.14 10.1109/TIFS.2009.2038751 10.1109/TCSVT.2009.2022694 10.1109/CVPR.2015.7298846 10.1109/34.598235 10.1109/TIP.2008.924280 10.1007/978-3-540-24670-1_36 10.5244/C.27.8 10.1109/TPAMI.2008.174 10.1109/CVPR.2013.389 10.1109/TPAMI.2011.112 10.1109/CVPR.2005.202 10.1109/34.993553 10.1109/TPAMI.2005.188 10.1109/TIP.2014.2315920 10.1109/TMM.2008.921847 10.1109/CVPR.2011.5995324 10.1109/TPAMI.2010.180 10.1109/TIFS.2014.2363792 10.1109/ICCV.2013.398 10.1023/B:VISI.0000029664.99615.94 10.1109/TIP.2015.2426413 10.1109/CVPR.2014.244 10.1109/ICIP.2009.5414103 10.1109/TPAMI.2015.2435740 10.1109/TPAMI.2008.79 10.1109/CVPR.2010.5539992 10.1007/s11432-013-4856-z 10.1109/TIP.2015.2412377 10.1109/TPAMI.2002.1017623 10.1109/TSMCB.2003.817091 10.1109/ICCV.2007.4409050 10.1109/TIP.2006.881993 10.1109/TPAMI.2007.70733 10.1109/TPAMI.2009.39 10.1109/CVPR.2009.5206849 10.1109/TNNLS.2014.2308519 10.1109/TPAMI.2004.57 10.1016/j.jvlc.2009.01.011 10.1109/TIP.2015.2469093 10.1109/TIFS.2011.2156787 10.1109/ICCV.2013.357 10.1016/j.neucom.2012.08.030 10.1109/IJCB.2011.6117547 10.1109/TPAMI.2006.244 10.1007/978-3-642-33868-7_19 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
DOI | 10.1109/TIP.2016.2535284 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Libary (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database MEDLINE - Academic Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 2154 |
ExternalDocumentID | 4046288161 26930681 10_1109_TIP_2016_2535284 7420684 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61103164 funderid: 10.13039/501100001809 – fundername: Australian Research Council grantid: DP-140102164; FT-130101457 funderid: 10.13039/501100000923 – fundername: Natural Science Foundation of Guangdong Province grantid: 2014A030313688 – fundername: Key Laboratory of Human-Machine Intelligence-Synergy Systems through the Chinese Academy of Sciences funderid: 10.13039/501100002367 – fundername: Shenzhen Basic Research Program grantid: JCYJ20120617114614438 – fundername: project MMT-8115038 of the Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c488t-40323311dcbdba2559aebc04435daa51ab0be8c9105bc171278c222c754cfae33 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Sep 05 05:05:05 EDT 2025 Thu Sep 04 19:35:02 EDT 2025 Sun Jun 29 12:41:10 EDT 2025 Mon Jul 21 05:47:59 EDT 2025 Tue Jul 01 02:03:06 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Tue Aug 26 16:43:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Face recognition feature descriptor aging faces |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-40323311dcbdba2559aebc04435daa51ab0be8c9105bc171278c222c754cfae33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://ir.opt.ac.cn/handle/181661/28080 |
PMID | 26930681 |
PQID | 1787034686 |
PQPubID | 85429 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1109_TIP_2016_2535284 proquest_journals_1787034686 crossref_citationtrail_10_1109_TIP_2016_2535284 ieee_primary_7420684 proquest_miscellaneous_1825568716 proquest_miscellaneous_1779414146 pubmed_primary_26930681 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref12 ref59 ref58 ref14 ref53 ref52 ref55 ref54 ref10 suo (ref16) 2009 ref17 ref19 ref18 (ref31) 0 li (ref67) 2009; 31 ref50 kwon (ref7) 1994 ref45 ref48 ref47 ref42 ref41 ref43 suo (ref15) 2010; 32 ref49 wolf (ref51) 2008 chen (ref44) 2014 ref8 ref9 ref4 ref3 ref40 ref35 ref34 ref30 zhou (ref13) 2005 ref33 chen (ref63) 2012 sun (ref46) 2014 caifeng (ref39) 2008 ref2 ref1 ref38 ref71 guo (ref5) 2008; 17 mu (ref6) 2009 ref68 ref24 ref23 ref26 ref69 ref25 ref64 ref20 ref66 ref22 lei (ref37) 2014; 36 ref65 ref21 (ref36) 0 wang (ref11) 2006; 3 ref28 ref27 ref29 ref60 ref62 wang (ref32) 2004 ref61 lu (ref70) 2015; 10 |
References_xml | – volume: 36 start-page: 289 year: 2014 ident: ref37 article-title: Learning discriminant face descriptor publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.112 – ident: ref30 doi: 10.1109/FGR.2006.78 – ident: ref1 doi: 10.1504/IJBM.2010.030415 – ident: ref53 doi: 10.1109/TNNLS.2013.2293418 – ident: ref24 doi: 10.1109/ICIP.2009.5413956 – ident: ref41 doi: 10.1109/CVPR.2005.177 – ident: ref64 doi: 10.1109/TIFS.2007.897247 – start-page: 762 year: 1994 ident: ref7 article-title: Age classification from facial images publication-title: Proc IEEE Conf Comput Vis Pattern Recognit doi: 10.1109/CVPR.1994.323894 – ident: ref28 doi: 10.1145/2647868.2655020 – ident: ref71 doi: 10.1109/ICCV.2013.188 – ident: ref59 doi: 10.1109/TPAMI.2014.2316826 – ident: ref27 doi: 10.1109/34.598228 – ident: ref17 doi: 10.1145/882262.882344 – ident: ref18 doi: 10.1109/TPAMI.2010.14 – ident: ref19 doi: 10.1109/TIFS.2009.2038751 – ident: ref68 doi: 10.1109/TCSVT.2009.2022694 – ident: ref49 doi: 10.1109/CVPR.2015.7298846 – start-page: 259 year: 2004 ident: ref32 article-title: Random sampling LDA for face recognition publication-title: Proc CVPR – year: 0 ident: ref31 publication-title: FaceVACS Software Developer Kit – ident: ref50 doi: 10.1109/34.598235 – volume: 17 start-page: 1178 year: 2008 ident: ref5 article-title: Image-based human age estimation by manifold learning and locally adjusted robust regression publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.924280 – ident: ref25 doi: 10.1007/978-3-540-24670-1_36 – ident: ref52 doi: 10.5244/C.27.8 – volume: 31 start-page: 755 year: 2009 ident: ref67 article-title: Nonparametric discriminant analysis for face recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.174 – ident: ref58 doi: 10.1109/CVPR.2013.389 – ident: ref66 doi: 10.1109/TPAMI.2011.112 – ident: ref65 doi: 10.1109/CVPR.2005.202 – ident: ref14 doi: 10.1109/34.993553 – ident: ref22 doi: 10.1109/TPAMI.2005.188 – ident: ref57 doi: 10.1109/TIP.2014.2315920 – ident: ref3 doi: 10.1109/TMM.2008.921847 – ident: ref38 doi: 10.1109/CVPR.2011.5995324 – ident: ref42 doi: 10.1109/TPAMI.2010.180 – volume: 10 start-page: 79 year: 2015 ident: ref70 article-title: Reconstruction-based metric learning for unconstrained face verification publication-title: IEEE Trans Inf Forensics Security doi: 10.1109/TIFS.2014.2363792 – ident: ref62 doi: 10.1109/ICCV.2013.398 – ident: ref23 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref56 doi: 10.1109/TIP.2015.2426413 – ident: ref47 doi: 10.1109/CVPR.2014.244 – year: 0 ident: ref36 publication-title: FG-Net Aging Database – start-page: 1 year: 2008 ident: ref51 article-title: Descriptor based methods in the wild publication-title: Proc Faces in Real-Life Images Workshop – ident: ref9 doi: 10.1109/ICIP.2009.5414103 – ident: ref61 doi: 10.1109/TPAMI.2015.2435740 – ident: ref69 doi: 10.1109/TPAMI.2008.79 – ident: ref45 doi: 10.1109/CVPR.2010.5539992 – ident: ref55 doi: 10.1007/s11432-013-4856-z – ident: ref48 doi: 10.1109/TIP.2015.2412377 – ident: ref21 doi: 10.1109/TPAMI.2002.1017623 – start-page: 622 year: 2009 ident: ref16 article-title: Learning long term face aging patterns from partially dense aging databases publication-title: Proc 12th ICCV – start-page: 768 year: 2014 ident: ref44 article-title: Cross-age reference coding for age-invariant face recognition and retrieval publication-title: Proc ECCV – ident: ref8 doi: 10.1109/TSMCB.2003.817091 – ident: ref12 doi: 10.1109/ICCV.2007.4409050 – start-page: 541 year: 2005 ident: ref13 article-title: Image based regression using boosting method publication-title: Proc 10th ICCV – ident: ref10 doi: 10.1109/TIP.2006.881993 – volume: 3 start-page: 913 year: 2006 ident: ref11 article-title: Age simulation for face recognition publication-title: Proc 18th ICPR – start-page: 566 year: 2012 ident: ref63 article-title: Bayesian face revisited: A joint formulation publication-title: Proc ECCV – ident: ref4 doi: 10.1109/TPAMI.2007.70733 – volume: 32 start-page: 385 year: 2010 ident: ref15 article-title: A compositional and dynamic model for face aging publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.39 – ident: ref40 doi: 10.1109/CVPR.2009.5206849 – ident: ref54 doi: 10.1109/TNNLS.2014.2308519 – ident: ref29 doi: 10.1109/TPAMI.2004.57 – ident: ref2 doi: 10.1016/j.jvlc.2009.01.011 – start-page: 1 year: 2008 ident: ref39 article-title: Learning discriminative LBP-histogram bins for facial expression recognition publication-title: Proc BMVC – ident: ref60 doi: 10.1109/TIP.2015.2469093 – ident: ref20 doi: 10.1109/TIFS.2011.2156787 – ident: ref43 doi: 10.1109/ICCV.2013.357 – ident: ref33 doi: 10.1016/j.neucom.2012.08.030 – ident: ref34 doi: 10.1109/IJCB.2011.6117547 – ident: ref26 doi: 10.1109/TPAMI.2006.244 – start-page: 112 year: 2009 ident: ref6 article-title: Human age estimation using bio-inspired features publication-title: Proc CVPR – ident: ref35 doi: 10.1007/978-3-642-33868-7_19 – year: 2014 ident: ref46 article-title: Deeply learned face representations are sparse, selective, and robust |
SSID | ssj0014516 |
Score | 2.4939082 |
Snippet | Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one,... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2146 |
SubjectTerms | Aging Aging - physiology aging faces Algorithms Biometric Identification - methods Databases, Factual Encoding Face Face - diagnostic imaging Face recognition Facial feature descriptor Feature extraction Humans Image coding Image Processing, Computer-Assisted - methods Learning Machine Learning Matching Mathematical models Tasks Transaction processing Visual Visualization |
Title | Aging Face Recognition: A Hierarchical Learning Model Based on Local Patterns Selection |
URI | https://ieeexplore.ieee.org/document/7420684 https://www.ncbi.nlm.nih.gov/pubmed/26930681 https://www.proquest.com/docview/1787034686 https://www.proquest.com/docview/1779414146 https://www.proquest.com/docview/1825568716 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3IolEebQpGReqlEdu2N8-K2VKwWBBVqQXCL_FpUdZVU3d1Lf31nHCdqK4qqXCxlkjgaT-abzHg-gPemKLWSaEjKyiyW1iVxiY4gzmmfKMYTtvSJ9utP2fROXj6kD2tw0u-Fcc754jM3oKHP5dvGrOhX2RDDOJ4Vch3WMXBr92r1GQMinPWZzTSPc4T9XUqSl8Pbixuq4coGI9_LhKh4RsQAmBXiD2_k6VX-jTS9x5lswXU317bQ5NtgtdQD8_OvNo7_-zLb8DJATzZu18orWHP1DmwFGMqCkS92YPO3HoW7cD8mGiM2Ucaxz121UVOfsjGbfqXdy55MZc5Co9ZHRuxqc3aG3tGypmZX5CzZjW_jWS_YF8-7gzfYg7vJ-e3HaRzYGGKDRr7EQDMZJYkQ1mirFUUiymnDJeItq1QqlObaFQbhR6qNyMUoLwyCD5On0syUS5J92Kib2r0B5kpe6sJqYWaJ1JIrwXFMvOeZ4uUsjWDYaaUyoVU5MWbMKx-y8LJClVak0iqoNIIP_RXf2zYdz8jukjZ6uaCICA47xVfBjheVoO9ZIrMii-C4P40WSGkVVbtmRTL4TRN4PCdT-FZvGJxG8LpdVP3zu7X49ul5HcALmn1bZHkIG8sfK_cOgdBSH3kL-AWFc_85 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcgAOFFoKhgKLxAUJJ954_VhuKSJKIakqSEVv1r6CEJFdNcmFX8_Mem0VBBXyZSWP7V3Nzs6M5_EBvDal1EqgICkr8lhYl8YSFUFcUJ0o-hNW-kD7_DSfnouPF9nFDrzta2Gccz75zA1o6GP5tjFb-lU2RDcuyUtxC26j3heyrdbqYwYEOetjm1kRF2j4d0HJRA4XJ2eUxZUPRr6bCYHxjAgDMC_5b_rIA6z829b0OmeyB_Nutm2qyY_BdqMH5ucfjRz_dzkP4H4wPtm43S0PYcfV-7AXDFEWxHy9D_eudSk8gK9jAjJiE2Uc-9zlGzX1OzZm0-9Uv-zhVFYstGr9xghfbcWOUT9a1tRsRuqSnflGnvWaffHIO_iCR3A--bB4P40DHkNsUMw36GqmozTl3BpttSJfRDltEoEWl1Uq40on2pUGDZBMG17wUVEaND9MkQmzVC5ND2G3bmr3BJiTidSl1dwsU6FFoniCY0I-z1Uil1kEw44rlQnNygkzY1V5pyWRFbK0IpZWgaURvOmfuGwbddxAe0Dc6OkCIyI46hhfBUleV5xOtFTkZR7Bq_42yiAFVlTtmi3R4KnG8bqJpvTN3tA9jeBxu6n673d78enf5_US7kwX81k1Ozn99Azu0kralMsj2N1cbd1zNIs2-oWXhl8QLwKY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aging+Face+Recognition%3A+A+Hierarchical+Learning+Model+Based+on+Local+Patterns+Selection&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Li%2C+Zhifeng&rft.au=Gong%2C+Dihong&rft.au=Li%2C+Xuelong&rft.au=Tao%2C+Dacheng&rft.date=2016-05-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=25&rft.issue=5&rft.spage=2146&rft.epage=2154&rft_id=info:doi/10.1109%2FTIP.2016.2535284&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2016_2535284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |