Aging Face Recognition: A Hierarchical Learning Model Based on Local Patterns Selection

Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 25; no. 5; pp. 2146 - 2154
Main Authors Li, Zhifeng, Gong, Dihong, Li, Xuelong, Tao, Dacheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2016.2535284

Cover

Loading…
More Information
Summary:Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appearance is subject to significant change during the aging process. In this paper, we propose to solve the problem with a hierarchical model based on two-level learning. At the first level, effective features are learned from low-level microstructures, based on our new feature descriptor called local pattern selection (LPS). The proposed LPS descriptor greedily selects low-level discriminant patterns in a way, such that intra-user dissimilarity is minimized. At the second level, higher level visual information is further refined based on the output from the first level. To evaluate the performance of our new method, we conduct extensive experiments on the MORPH data set (the largest face aging data set available in the public domain), which show a significant improvement in accuracy over the state-of-the-art methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2016.2535284