Revisiting Multi-Domain Machine Translation

When building machine translation systems, one often needs to make the best out of heterogeneous sets of parallel data in training, and to robustly handle inputs from unexpected domains in testing. This multi-domain scenario has attracted a lot of recent work that fall under the general umbrella of...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Association for Computational Linguistics Vol. 9; pp. 17 - 35
Main Authors Pham, MinhQuang, Crego, Josep Maria, Yvon, François
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.01.2021
MIT Press Journals, The
The MIT Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:When building machine translation systems, one often needs to make the best out of heterogeneous sets of parallel data in training, and to robustly handle inputs from unexpected domains in testing. This multi-domain scenario has attracted a lot of recent work that fall under the general umbrella of transfer learning. In this study, we revisit multi-domain machine translation, with the aim to formulate the motivations for developing such systems and the associated expectations with respect to performance. Our experiments with a large sample of multi-domain systems show that most of these expectations are hardly met and suggest that further work is needed to better analyze the current behaviour of multi-domain systems and to make them fully hold their promises.
Bibliography:Volume, 2021
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2307-387X
2307-387X
DOI:10.1162/tacl_a_00351