Assessing the Accuracy of Parameter Estimates in the Presence of Rapid Guessing Misclassifications

The presence of rapid guessing (RG) presents a challenge to practitioners in obtaining accurate estimates of measurement properties and examinee ability. In response to this concern, researchers have utilized response times as a proxy of RG and have attempted to improve parameter estimation accuracy...

Full description

Saved in:
Bibliographic Details
Published inEducational and psychological measurement Vol. 82; no. 1; pp. 122 - 150
Main Author Rios, Joseph A.
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.02.2022
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The presence of rapid guessing (RG) presents a challenge to practitioners in obtaining accurate estimates of measurement properties and examinee ability. In response to this concern, researchers have utilized response times as a proxy of RG and have attempted to improve parameter estimation accuracy by filtering RG responses using popular scoring approaches, such as the effort-moderated item response theory (EM-IRT) model. However, such an approach assumes that RG can be correctly identified based on an indirect proxy of examinee behavior. A failure to meet this assumption leads to the inclusion of distortive and psychometrically uninformative information in parameter estimates. To address this issue, a simulation study was conducted to examine how violations to the assumption of correct RG classification influences EM-IRT item and ability parameter estimation accuracy and compares these results with parameter estimates from the three-parameter logistic (3PL) model, which includes RG responses in scoring. Two RG misclassification factors were manipulated: type (underclassification vs. overclassification) and rate (10%, 30%, and 50%). Results indicated that the EM-IRT model provided improved item parameter estimation over the 3PL model regardless of misclassification type and rate. Furthermore, under most conditions, increased rates of RG underclassification were associated with the greatest bias in ability parameter estimates from the EM-IRT model. In spite of this, the EM-IRT model with RG misclassifications demonstrated more accurate ability parameter estimation than the 3PL model when the mean ability of RG subgroups did not differ. This suggests that in certain situations it may be better for practitioners to (a) imperfectly identify RG than to ignore the presence of such invalid responses and (b) select liberal over conservative response time thresholds to mitigate bias from underclassified RG.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-1644
1552-3888
DOI:10.1177/00131644211003640