Three-dimensional filamentous human diseased cardiac tissue model
Abstract A human in vitro cardiac tissue model would be a significant advancement for understanding, studying, and developing new strategies for treating cardiac arrhythmias and related cardiovascular diseases. We developed an in vitro model of three-dimensional (3D) human cardiac tissue by populati...
Saved in:
Published in | Biomaterials Vol. 35; no. 5; pp. 1367 - 1377 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract A human in vitro cardiac tissue model would be a significant advancement for understanding, studying, and developing new strategies for treating cardiac arrhythmias and related cardiovascular diseases. We developed an in vitro model of three-dimensional (3D) human cardiac tissue by populating synthetic filamentous matrices with cardiomyocytes derived from healthy wild-type volunteer (WT) and patient-specific long QT syndrome type 3 (LQT3) induced pluripotent stem cells (iPS-CMs) to mimic the condensed and aligned human ventricular myocardium. Using such a highly controllable cardiac model, we studied the contractility malfunctions associated with the electrophysiological consequences of LQT3 and their response to a panel of drugs. By varying the stiffness of filamentous matrices, LQT3 iPS-CMs exhibited different level of contractility abnormality and susceptibility to drug-induced cardiotoxicity. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2013.10.052 |