Joint thresholding and quantizer selection for transform image coding: entropy-constrained analysis and applications to baseline JPEG
Striving to maximize baseline (Joint Photographers Expert Group-JPEG) image quality without compromising compatibility of current JPEG decoders, we develop an image-adaptive JPEG encoding algorithm that jointly optimizes quantizer selection, coefficient "thresholding", and Huffman coding w...
Saved in:
Published in | IEEE transactions on image processing Vol. 6; no. 2; pp. 285 - 297 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
1997
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Striving to maximize baseline (Joint Photographers Expert Group-JPEG) image quality without compromising compatibility of current JPEG decoders, we develop an image-adaptive JPEG encoding algorithm that jointly optimizes quantizer selection, coefficient "thresholding", and Huffman coding within a rate-distortion (R-D) framework. Practically speaking, our algorithm unifies two previous approaches to image-adaptive JPEG encoding: R-D optimized quantizer selection and R-D optimal thresholding. Conceptually speaking, our algorithm is a logical consequence of entropy-constrained vector quantization (ECVQ) design principles in the severely constrained instance of JPEG-compatible encoding. We explore both viewpoints: the practical, to concretely derive our algorithm, and the conceptual, to justify the claim that our algorithm approaches the best performance that a JPEG encoder can achieve. This performance includes significant objective peak signal-to-noise ratio (PSNR) improvement over previous work and at high rates gives results comparable to state-of-the-art image coders. For example, coding the Lena image at 1.0 b/pixel, our JPEG encoder achieves a PSNR performance of 39.6 dB that slightly exceeds the quoted PSNR results of Shapiro's wavelet-based zero-tree coder. Using a visually based distortion metric, we can achieve noticeable subjective improvement as well. Furthermore, our algorithm may be applied to other systems that use run-length encoding, including intraframe MPEG and subband or wavelet coding. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/83.551698 |