Intrinsic resistance to EGFR-Tyrosine Kinase Inhibitors in EGFR -Mutant Non-Small Cell Lung Cancer: Differences and Similarities with Acquired Resistance

Activating mutations in the gene occur as early cancer-driving clonal events in a subset of patients with non-small cell lung cancer (NSCLC) and result in increased sensitivity to EGFR-tyrosine-kinase-inhibitors (EGFR-TKIs). Despite very frequent and often prolonged clinical response to EGFR-TKIs, v...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 11; no. 7; p. 923
Main Authors Santoni-Rugiu, Eric, Melchior, Linea C, Urbanska, Edyta M, Jakobsen, Jan N, Stricker, Karin de, Grauslund, Morten, Sørensen, Jens B
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.07.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Activating mutations in the gene occur as early cancer-driving clonal events in a subset of patients with non-small cell lung cancer (NSCLC) and result in increased sensitivity to EGFR-tyrosine-kinase-inhibitors (EGFR-TKIs). Despite very frequent and often prolonged clinical response to EGFR-TKIs, virtually all advanced -mutated ( M+) NSCLCs inevitably acquire resistance mechanisms and progress at some point during treatment. Additionally, 20-30% of patients do not respond or respond for a very short time (<3 months) because of intrinsic resistance. While several mechanisms of acquired EGFR-TKI-resistance have been determined by analyzing tumor specimens obtained at disease progression, the factors causing intrinsic TKI-resistance are less understood. However, recent comprehensive molecular-pathological profiling of advanced M+ NSCLC at baseline has illustrated the co-existence of multiple genetic, phenotypic, and functional mechanisms that may contribute to tumor progression and cause intrinsic TKI-resistance. Several of these mechanisms have been further corroborated by preclinical experiments. Intrinsic resistance can be caused by mechanisms inherent in or by -independent processes, including genetic, phenotypic or functional tumor changes. This comprehensive review describes the identified mechanisms connected with intrinsic EGFR-TKI-resistance and differences and similarities with acquired resistance and among clinically implemented EGFR-TKIs of different generations. Additionally, the review highlights the need for extensive pre-treatment molecular profiling of advanced NSCLC for identifying inherently TKI-resistant cases and designing potential combinatorial targeted strategies to treat them.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers11070923