Single event effect characterization of the mixed-signal ASIC developed for CCD camera in space use
We present the single event effect (SEE) tolerance of a mixed-signal application-specific integrated circuit (ASIC) developed for a charge-coupled device camera onboard a future X-ray astronomical mission. We adopted proton and heavy ion beams at HIMAC/NIRS in Japan. The particles with high linear e...
Saved in:
Published in | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Vol. 731; pp. 166 - 171 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present the single event effect (SEE) tolerance of a mixed-signal application-specific integrated circuit (ASIC) developed for a charge-coupled device camera onboard a future X-ray astronomical mission. We adopted proton and heavy ion beams at HIMAC/NIRS in Japan. The particles with high linear energy transfer (LET) of 57.9MeVcm2/mg is used to measure the single event latch-up (SEL) tolerance, which results in a sufficiently low cross-section of σSEL<4.2×10−11cm2/(Ion×ASIC). The single event upset (SEU) tolerance is estimated with various kinds of species with wide range of energy. Taking into account that a part of the protons creates recoiled heavy ions that have higher LET than that of the incident protons, we derived the probability of SEU event as a function of LET. Then the SEE event rate in a low-earth orbit is estimated considering a simulation result of LET spectrum. SEL rate is below once per 49years, which satisfies the required latch-up tolerance. The upper limit of the SEU rate is derived to be 1.3×10−3events/s. Although the SEU events cannot be distinguished from the signals of X-ray photons from astronomical objects, the derived SEU rate is below 1.3% of expected non-X-ray background rate of the detector and hence these events should not be a major component of the instrumental background. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2013.05.146 |