A Robust Method for Pulse Peak Determination in a Digital Volume Pulse Waveform With a Wandering Baseline

This paper presents a robust method for pulse peak determination in a digital volume pulse (DVP) waveform with a wandering baseline. A proposed new method uses a modified morphological filter (MMF) to eliminate a wandering baseline signal of the DVP signal with minimum distortion and a slope sum fun...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 8; no. 5; pp. 729 - 737
Main Authors Dae-Geun Jang, Farooq, Umar, Seung-Hun Park, Minsoo Hahn
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a robust method for pulse peak determination in a digital volume pulse (DVP) waveform with a wandering baseline. A proposed new method uses a modified morphological filter (MMF) to eliminate a wandering baseline signal of the DVP signal with minimum distortion and a slope sum function (SSF) with an adaptive thresholding scheme to detect pulse peaks from the baseline-removed DVP signal. Further in order to cope with over-detected and missed pulse peaks, knowledge based rules are applied as a postprocessor. The algorithm automatically adjusts detection parameters periodically to adapt to varying beat morphologies and fluctuations. Compared with conventional methods (highpass filtering, linear interpolation, cubic spline interpolation, and wavelet adaptive filtering), our method performs better in terms of the signal-to-error ratio, the computational burden (0.125 seconds for one minute of DVP signal analysis with the Intel Core 2 Quad processor @ 2.40 GHz PC), the true detection rate (97.32% with an acceptance level of 4 ms ) as well as the normalized error rate (0.18%). In addition, the proposed method can detect true positions of pulse peaks more accurately and becomes very useful for pulse transit time (PTT) and pulse rate variability (PRV) analyses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-4545
1940-9990
DOI:10.1109/TBCAS.2013.2295102