Memristor Crossbar-Based Neuromorphic Computing System: A Case Study

By mimicking the highly parallel biological systems, neuromorphic hardware provides the capability of information processing within a compact and energy-efficient platform. However, traditional Von Neumann architecture and the limited signal connections have severely constrained the scalability and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 25; no. 10; pp. 1864 - 1878
Main Authors Miao Hu, Hai Li, Yiran Chen, Qing Wu, Rose, Garrett S., Linderman, Richard W.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:By mimicking the highly parallel biological systems, neuromorphic hardware provides the capability of information processing within a compact and energy-efficient platform. However, traditional Von Neumann architecture and the limited signal connections have severely constrained the scalability and performance of such hardware implementations. Recently, many research efforts have been investigated in utilizing the latest discovered memristors in neuromorphic systems due to the similarity of memristors to biological synapses. In this paper, we explore the potential of a memristor crossbar array that functions as an autoassociative memory and apply it to brain-state-in-a-box (BSB) neural networks. Especially, the recall and training functions of a multianswer character recognition process based on the BSB model are studied. The robustness of the BSB circuit is analyzed and evaluated based on extensive Monte Carlo simulations, considering input defects, process variations, and electrical fluctuations. The results show that the hardware-based training scheme proposed in the paper can alleviate and even cancel out the majority of the noise issue.
Bibliography:ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2013.2296777