Stimulation of mutagenesis by proportional deoxyribonucleoside triphosphate accumulation in Escherichia coli

Intracellular pool sizes of deoxyribonucleoside triphosphates (dNTPs) are highly regulated. Unbalanced dNTP pools, created by abnormal accumulation or deficiency of one nucleotide, are known to be mutagenic and to have other genotoxic consequences. Recent studies in our laboratory on DNA replication...

Full description

Saved in:
Bibliographic Details
Published inDNA repair Vol. 4; no. 12; pp. 1450 - 1456
Main Authors Wheeler, Linda J., Rajagopal, Indira, Mathews, Christopher K.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 08.12.2005
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Intracellular pool sizes of deoxyribonucleoside triphosphates (dNTPs) are highly regulated. Unbalanced dNTP pools, created by abnormal accumulation or deficiency of one nucleotide, are known to be mutagenic and to have other genotoxic consequences. Recent studies in our laboratory on DNA replication in vitro suggested that balanced accumulation of dNTPs, in which all four pools increase proportionately, also stimulates mutagenesis. In this paper, we ask whether proportional dNTP pool increases are mutagenic also in living cells. Escherichia coli was transformed with recombinant plasmids that overexpress E. coli genes nrdA and nrdB, which encode the two protein subunits of aerobic ribonucleotide reductase. Roughly proportional dNTP pool expansion, by factors of 2- to 6-fold in different experiments, was accompanied by increases in spontaneous mutation frequency of up to 40-fold. Expression of a catalytically inactive ribonucleotide reductase had no effect on either dNTP pools or mutagenesis, suggesting that accumulation of dNTPs is responsible for the increased mutagenesis. Preliminary experiments with strains defective in SOS regulon induction suggest a requirement for one or more SOS functions in the dNTP-enhanced mutagenesis. Because a replisome extending from correctly matched 3′-terminal nucleotides is almost certainly saturated with dNTP substrates in vivo, whereas chain extension from mismatched nucleotides almost certainly proceeds at sub-saturating rates, we propose that the mutagenic effect of proportional dNTP pool expansion is preferential stimulation of chain extension from mismatches as a result of increases in intracellular dNTP concentrations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1568-7864
1568-7856
DOI:10.1016/j.dnarep.2005.09.003