Sulfur-doped carbon dots@polydopamine-functionalized magnetic silver nanocubes for dual-modality detection of norovirus
Synergistic dual-mode optical platforms are up-and-coming detection tools in the diagnosis and management of infectious diseases. Here, novel dual-modality fluorescence (FL) and surface-enhanced Raman scattering (SERS) techniques have been integrated into a single probe for the rapid and ultrasensit...
Saved in:
Published in | Biosensors & bioelectronics Vol. 193; p. 113540 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Synergistic dual-mode optical platforms are up-and-coming detection tools in the diagnosis and management of infectious diseases. Here, novel dual-modality fluorescence (FL) and surface-enhanced Raman scattering (SERS) techniques have been integrated into a single probe for the rapid and ultrasensitive detection of norovirus (NoV). The developed FL-SER-based biosensor relies on the dual-signal enhancements of newly synthesized sulfur-doped agar-derived carbon dots (S-agCDs). The antigen-antibody immunoreaction results in forming a core-satellite immunocomplex between anti-NoV antibody-conjugated S-agCDs and polydopamine-functionalized magnetic silver nanocubes [poly (dop)-MNPs-Ag NCs]. By deploying an immunomagnetic enrichment protocol and performing the SERS modality on a single-layer graphene substrate, norovirus-like particles (NoV-LPs) were detected across a wide range of 1 fg mL−1 – 10 ng mL−1 with an excellent limit of detection of 0.1 fg mL−1. The combined advantage of the dual-signaling properties of the biosensor was demonstrated using FL confocal imaging for “hotspots” tracking prior to SERS detection of clinical NoV in fecal specimen down to ⁓10 RNA copies mL−1. The proposed dual-modality biosensor's performance increases the prospect of a rapid and low-cost sensitive NoV detection and surveillance option for public health.
[Display omitted]
•A dual-modality biosensor based on Fluorescence and SERS techniques is presented for norovirus bioassay.•Magneto-plasmonic silver nanocubes served as the optical signal enhancer and magnetic enrichment materials.•Norovirus clinical specimens from infected patients were rapidly and ultrasensitively detected down to 10 RNA copies mL-1. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2021.113540 |