Dynamics of passive and active membrane tubes
Utilising Onsager's variational formulation, we derive dynamical equations for the relaxation of a fluid membrane tube in the limit of small deformation, allowing for a contrast of solvent viscosity across the membrane and variations in surface tension due to membrane incompressibility. We comp...
Saved in:
Published in | Soft matter Vol. 16; no. 4; pp. 9319 - 933 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Utilising Onsager's variational formulation, we derive dynamical equations for the relaxation of a fluid membrane tube in the limit of small deformation, allowing for a contrast of solvent viscosity across the membrane and variations in surface tension due to membrane incompressibility. We compute the relaxation rates, recovering known results in the case of purely axis-symmetric perturbations and making new predictions for higher order (azimuthal)
m
-modes. We analyse the long and short wavelength limits of these modes by making use of various asymptotic arguments. We incorporate stochastic terms to our dynamical equations suitable to describe both passive thermal forces and non-equilibrium active forces. We derive expressions for the fluctuation amplitudes, an effective temperature associated with active fluctuations, and the power spectral density for both the thermal and active fluctuations. We discuss an experimental assay that might enable measurement of these fluctuations to infer the properties of the active noise. Finally we discuss our results in the context of active membranes more generally and give an overview of some open questions in the field.
We compute the thermal and active fluctuations of a membrane tube, providing a theoretical framework to understand active membrane tubes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/d0sm01290d |