Global Neural Dynamic Surface Tracking Control of Strict-Feedback Systems With Application to Hypersonic Flight Vehicle
This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approxim...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 26; no. 10; pp. 2563 - 2575 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approximation domain, together with the robust controller that pulls the transient states back into the neural approximation domain from the outside. In comparison with the conventional control techniques, which could only achieve semiglobally uniformly ultimately bounded stability, the proposed control scheme guarantees all the signals in the closed-loop system are globally uniformly ultimately bounded, such that the conventional constraints on initial conditions of the neural control system can be relaxed. The simulation studies of hypersonic flight vehicle (HFV) are performed to demonstrate the effectiveness of the proposed global neural DSC design. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2015.2456972 |