Screen-printable films of graphene/CoS2/Ni3S4 composites for the fabrication of flexible and arbitrary-shaped all-solid-state hybrid supercapacitors

Supercapacitors are attracting increasing research interest because they are expected to achieve battery-level energy density while having a long calendar life and a short charging time. However, the development of large-scale and cost-reasonable production methods for flexible, wearable and arbitra...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 146; pp. 557 - 567
Main Authors Jiang, Degang, Liang, Hui, Yang, Wenrong, Liu, Yan, Cao, Xueying, Zhang, Jingmin, Li, Chenwei, Liu, Jingquan, Gooding, J. Justin
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.05.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Supercapacitors are attracting increasing research interest because they are expected to achieve battery-level energy density while having a long calendar life and a short charging time. However, the development of large-scale and cost-reasonable production methods for flexible, wearable and arbitrary-shaped supercapacitor devices still faces enormous challenges. Herein, a 3D-network, porous graphene/CoS2/Ni3S4 (G/CoS2/Ni3S4) composite electrode has been designed and synthesized through a combination of solvothermal and vulcanization methods. By combining the networked CoS2/Ni3S4 nanoflakes with reduced graphene oxide (RGO) nanosheets, the as-prepared composite electrode exhibits good conductivity, a high density of electrochemically active sites and good cycling stability. The result is a high specific capacitance of 1739 F g−1 at a current density of 0.5 A g−1. Significantly, the arbitrary-shaped G/CoS2/Ni3S4||GF hybrid supercapacitor devices can be printed directly on different substrates, which favorably combine mechanical flexibility, good cycling performance and high energy density. This methodology may be feasible to prepare fully-printable and wearable supercapacitors, and other electronic devices in large scale, thereby holding enormous potential for wearable technologies. [Display omitted]
AbstractList Supercapacitors are attracting increasing research interest because they are expected to achieve battery-level energy density while having a long calendar life and a short charging time. However, the development of large-scale and cost-reasonable production methods for flexible, wearable and arbitrary-shaped supercapacitor devices still faces enormous challenges. Herein, a 3D-network, porous graphene/CoS2/Ni3S4 (G/CoS2/Ni3S4) composite electrode has been designed and synthesized through a combination of solvothermal and vulcanization methods. By combining the networked CoS2/Ni3S4 nanoflakes with reduced graphene oxide (RGO) nanosheets, the as-prepared composite electrode exhibits good conductivity, a high density of electrochemically active sites and good cycling stability. The result is a high specific capacitance of 1739 F g−1 at a current density of 0.5 A g−1. Significantly, the arbitrary-shaped G/CoS2/Ni3S4||GF hybrid supercapacitor devices can be printed directly on different substrates, which favorably combine mechanical flexibility, good cycling performance and high energy density. This methodology may be feasible to prepare fully-printable and wearable supercapacitors, and other electronic devices in large scale, thereby holding enormous potential for wearable technologies. [Display omitted]
Supercapacitors are attracting increasing research interest because they are expected to achieve battery-level energy density while having a long calendar life and a short charging time. However, the development of large-scale and cost-reasonable production methods for flexible, wearable and arbitrary-shaped supercapacitor devices still faces enormous challenges. Herein, a 3D-network, porous graphene/CoS2/Ni3S4 (G/CoS2/Ni3S4) composite electrode has been designed and synthesized through a combination of solvothermal and vulcanization methods. By combining the networked CoS2/Ni3S4 nanoflakes with reduced graphene oxide (RGO) nanosheets, the as-prepared composite electrode exhibits good conductivity, a high density of electrochemically active sites and good cycling stability. The result is a high specific capacitance of 1739 F g−1 at a current density of 0.5 A g−1. Significantly, the arbitrary-shaped G/CoS2/Ni3S4||GF hybrid supercapacitor devices can be printed directly on different substrates, which favorably combine mechanical flexibility, good cycling performance and high energy density. This methodology may be feasible to prepare fully-printable and wearable supercapacitors, and other electronic devices in large scale, thereby holding enormous potential for wearable technologies.
Author Liu, Yan
Yang, Wenrong
Cao, Xueying
Li, Chenwei
Liu, Jingquan
Liang, Hui
Gooding, J. Justin
Jiang, Degang
Zhang, Jingmin
Author_xml – sequence: 1
  givenname: Degang
  surname: Jiang
  fullname: Jiang, Degang
  organization: College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
– sequence: 2
  givenname: Hui
  surname: Liang
  fullname: Liang, Hui
  organization: College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
– sequence: 3
  givenname: Wenrong
  orcidid: 0000-0001-8815-1951
  surname: Yang
  fullname: Yang, Wenrong
  organization: School of Life and Environmental Sciences, Deakin University, VIC, 3217, Australia
– sequence: 4
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  organization: College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
– sequence: 5
  givenname: Xueying
  surname: Cao
  fullname: Cao, Xueying
  organization: College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
– sequence: 6
  givenname: Jingmin
  surname: Zhang
  fullname: Zhang, Jingmin
  organization: College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
– sequence: 7
  givenname: Chenwei
  orcidid: 0000-0003-0343-3699
  surname: Li
  fullname: Li, Chenwei
  email: lichenwei@qdu.edu.cn
  organization: College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
– sequence: 8
  givenname: Jingquan
  surname: Liu
  fullname: Liu, Jingquan
  email: jliu@qdu.edu.cn
  organization: College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
– sequence: 9
  givenname: J. Justin
  orcidid: 0000-0002-5398-0597
  surname: Gooding
  fullname: Gooding, J. Justin
  email: justin.gooding@unsw.edu.au
  organization: School of Chemistry, Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
BookMark eNqFkb2OEzEUhS20SGQX3oDCEg2NJ_6byQwFEoqARVpBEagtx74mjhx7sB20-x48MB5CtQVUlq--c3TvOdfoKqYICL1ktGOUDetjZ3Tep9hxyqaO8o7K_glasXEjiBgndoVWlNKRDJyLZ-i6lGP7ypHJFfq1Mxkgkjn7WPU-AHY-nApODn_Pej5AhPU27fj6sxc7iU06zan4CgW7lHE9NF7vsze6-hQXlQtw7xcfHS1uW_madX4g5aBnaIMQSEnBW1KqroAPD01scTnPkI2etfE15fIcPXU6FHjx971B3z68_7q9JXdfPn7avrsjRo6bSnpmwAwATvI2cA4cs9K6jZ2AW-ooZ9xOox4cSDP1Q2_6YYDeABdUQw-TuEGvL75zTj_OUKo6-WIgBB0hnYvinDPKhdws6KtH6DGdc2zbNUqISXIuaaPkhTI5lZLBqZbrqd2vGFVLVeqoLlWppSpFuWpVNdmbR7KWw59EW3g-_E_89iKGltRPD1kV4yEasD6Dqcom_2-D39SMtzc
CitedBy_id crossref_primary_10_1016_j_cej_2020_127237
crossref_primary_10_1016_j_est_2022_105622
crossref_primary_10_1039_D3NR05275C
crossref_primary_10_1016_j_sna_2022_113696
crossref_primary_10_1016_j_jallcom_2022_167634
crossref_primary_10_1016_j_est_2020_102197
crossref_primary_10_3390_coatings10090892
crossref_primary_10_1016_j_est_2022_106110
crossref_primary_10_1002_cssc_202002236
crossref_primary_10_1002_ange_201907516
crossref_primary_10_1007_s10934_023_01501_8
crossref_primary_10_1039_C9SE00339H
crossref_primary_10_1016_j_est_2024_112396
crossref_primary_10_1007_s40820_019_0342_5
crossref_primary_10_1016_j_jcis_2022_11_038
crossref_primary_10_1016_j_apsusc_2022_155811
crossref_primary_10_1016_j_diamond_2023_110136
crossref_primary_10_1016_j_est_2022_106559
crossref_primary_10_1007_s40843_020_1667_1
crossref_primary_10_1016_j_est_2021_103550
crossref_primary_10_1088_2631_7990_aca8da
crossref_primary_10_1016_j_jallcom_2022_166036
crossref_primary_10_1039_C9TA08693E
crossref_primary_10_1016_j_jechem_2021_08_011
crossref_primary_10_1021_acsanm_4c06380
crossref_primary_10_1007_s10854_021_07190_w
crossref_primary_10_1016_j_matpr_2022_09_543
crossref_primary_10_1016_j_mtadv_2021_100157
crossref_primary_10_1039_C9TA09646A
crossref_primary_10_1016_j_susmat_2020_e00190
crossref_primary_10_1021_acs_energyfuels_0c02767
crossref_primary_10_1002_advs_202203808
crossref_primary_10_1016_j_electacta_2020_136679
crossref_primary_10_1016_j_jallcom_2021_160627
crossref_primary_10_1016_j_electacta_2019_06_107
crossref_primary_10_1016_j_cej_2019_122210
crossref_primary_10_1016_j_electacta_2024_144993
crossref_primary_10_1364_OL_447221
crossref_primary_10_1016_j_apsusc_2020_147817
crossref_primary_10_1016_j_jiec_2024_11_012
crossref_primary_10_1016_j_electacta_2022_141041
crossref_primary_10_1016_j_surfin_2022_102134
crossref_primary_10_1002_eem2_12201
crossref_primary_10_1002_anie_201907516
crossref_primary_10_1016_j_ceramint_2021_10_144
crossref_primary_10_1016_j_carbon_2021_04_029
crossref_primary_10_1016_j_carbon_2023_118736
crossref_primary_10_1016_j_ceramint_2020_02_270
crossref_primary_10_1016_j_ensm_2024_103791
crossref_primary_10_1039_D1EE03567C
crossref_primary_10_1039_D2TA08176H
crossref_primary_10_1016_j_jallcom_2021_160979
crossref_primary_10_1021_acsanm_0c01746
crossref_primary_10_1016_j_egyr_2020_10_001
crossref_primary_10_1039_D1NR00987G
crossref_primary_10_1016_j_electacta_2024_145155
crossref_primary_10_1016_j_jallcom_2019_153546
crossref_primary_10_1002_asia_202100124
crossref_primary_10_1002_ente_202000987
crossref_primary_10_1016_j_jallcom_2023_171603
crossref_primary_10_1021_acsanm_2c01529
crossref_primary_10_1021_acsomega_2c04300
crossref_primary_10_1007_s40843_020_1371_y
crossref_primary_10_1016_j_matchemphys_2021_125128
crossref_primary_10_1016_j_solidstatesciences_2020_106363
crossref_primary_10_1039_D2SC03585E
crossref_primary_10_1063_5_0177677
crossref_primary_10_1016_j_jpowsour_2019_226897
crossref_primary_10_1039_C9RA06439G
crossref_primary_10_1016_j_mtchem_2021_100713
crossref_primary_10_1002_adma_202305161
crossref_primary_10_1088_1402_4896_ad3f8a
crossref_primary_10_1016_j_synthmet_2021_116761
crossref_primary_10_1002_est2_666
crossref_primary_10_1021_acsami_0c07499
crossref_primary_10_1039_D0TA11536C
crossref_primary_10_3390_c5040062
Cites_doi 10.1021/nl203903z
10.1039/C5EE03633J
10.1039/C7TA06040H
10.1016/j.cej.2017.10.029
10.1021/nn101754k
10.1039/c2jm35307e
10.1038/nature04969
10.1002/adma.201602802
10.1002/adma.200990138
10.1002/aenm.201600341
10.1016/S0169-4332(00)00378-0
10.1002/adma.201205064
10.1002/adma.201104691
10.1039/C3TA15373H
10.1039/c2ee02414d
10.1016/j.jpowsour.2012.10.064
10.1002/aenm.201300816
10.1126/science.1158877
10.1016/j.jpowsour.2014.09.144
10.1021/am5053784
10.1002/adfm.201102839
10.1016/j.cej.2018.03.042
10.1039/C8TA04307H
10.1149/2.0201505jes
10.1002/1521-4095(200009)12:17<1249::AID-ADMA1249>3.0.CO;2-Y
10.1126/science.1249625
10.1038/natrevmats.2017.23
10.1039/C4CS00116H
10.1002/aenm.201700983
10.1002/adma.201504403
10.1002/adfm201301851
10.1039/C6TA07898B
10.1016/j.cej.2017.10.008
10.1039/C7TA01326D
10.1039/C5TA04464B
10.1021/nn4000836
10.1002/aenm.201300184
10.1002/aenm.201601234
10.1021/acs.chemrev.8b00252
10.1038/nnano.2016.196
10.1039/C4TA00414K
10.1126/science.1102896
10.1002/adma.201800804
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV May 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV May 2019
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.carbon.2019.02.045
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
EndPage 567
ExternalDocumentID 10_1016_j_carbon_2019_02_045
S0008622319301708
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EFKBS
7SR
8FD
JG9
SSH
7S9
L.6
ID FETCH-LOGICAL-c487t-51cec6eef42c48ffef1d4df7d9e2d0f0212d98a6fe4c9565c566e5ce230ae5e93
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Jul 11 01:39:26 EDT 2025
Fri Jul 25 06:27:53 EDT 2025
Thu Apr 24 22:59:00 EDT 2025
Tue Aug 05 03:08:22 EDT 2025
Fri Feb 23 02:32:48 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-51cec6eef42c48ffef1d4df7d9e2d0f0212d98a6fe4c9565c566e5ce230ae5e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0343-3699
0000-0002-5398-0597
0000-0001-8815-1951
OpenAccessLink http://hdl.handle.net/1959.4/unsworks_72212
PQID 2233942240
PQPubID 2045273
PageCount 11
ParticipantIDs proquest_miscellaneous_2221023479
proquest_journals_2233942240
crossref_primary_10_1016_j_carbon_2019_02_045
crossref_citationtrail_10_1016_j_carbon_2019_02_045
elsevier_sciencedirect_doi_10_1016_j_carbon_2019_02_045
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References He, Wang, Li, Deng, Xu, Zhai (bib12) 2017; 7
Hu, Cui (bib5) 2012; 5
Shi, Li, He, Zhang, Li (bib10) 2015; 3
Kyeremateng, Brousse, Pech (bib1) 2017; 12
Du, Wang, Zhu, Hu, Zhu, Shi (bib27) 2014; 2
Zhu, Wu, Jing, Yang, Song, Ji (bib43) 2015; 273
Yan, Wang, Wei, Fan (bib7) 2014; 4
Gao, Chen, Chang, Chen, Wang, Wu (bib32) 2018; 343
Simon, Gogotsi, Dunn (bib6) 2014; 343
Chen, Yang, Yang, Lv, Wen, Hou (bib19) 2009; 21
Yan, Fan, Sun, Ning, Wei, Zhang (bib13) 2012; 22
Wen, Peng, Wang, Hao, Qin, Lu (bib30) 2017; 5
Song, Fan, Sun, Han, Bao, Niu (bib36) 2017; 5
Stankovich, Dikin, Dommett, Kohlhaas, Zimney, Stach (bib15) 2006; 442
Xiang, Li, Zhi, Manivannan, Wu (bib17) 2013; 226
Pardo, Jabbour, Peyghambarian (bib23) 2000; 12
Yan, Fan, Sun, Ning, Wei, Zhang (bib37) 2012; 22
Fan, Lin, Wang, Ma, Lu (bib46) 2018; 30
Yang, Sun, Zan, Zhao, Lian (bib33) 2016; 4
Zheng, Wang, Zhao, Cao, Liu (bib38) 2018; 333
Sun, Zhang, Zhang, Sun, Peng (bib2) 2017; 2
Shi, Li, He, Zhang, Li (bib40) 2015; 3
Zhang, Zhao, Stoller, Zhu, Ji, Murali (bib18) 2012; 12
Xu, Lin, Huang, Liu, Huang, Duan (bib21) 2013; 7
Qi, Liu, Liu, Zhang, Chen (bib4) 2017; 29
Wu, Ren, Wang, Li, Liu, Cheng (bib45) 2010; 4
Mohammadi, Arsalani, Tabrizi, Moosavifard, Naqshbandi, Ghadimi (bib34) 2018; 334
Brousse, Bélanger, Long (bib9) 2015; 162
He, Wang, Li, Deng, Xu, Zhai (bib31) 2017; 7
Pu, Li, Liu, Jiang, Du, Zhao (bib8) 2016; 28
Yang, Yu, Fan, Liang, Li, Huang (bib25) 2016; 9
Zhu, Tang, Wu, Shi, Zhu, Meng (bib26) 2017; 7
Shen, Wu, Pei, Rodrigues, Zhang, Zhang (bib28) 2016; 6
Chang, Jin, Yao, Kim, Le, Yue (bib11) 2013; 23
Jiang, Liang, Liu, Zheng, Li, Yang (bib24) 2018; 6
Kim, Pugmire, Battaglia, Langell (bib29) 2000; 165
Wang, Liu, Lu, Lee (bib44) 2012; 22
Shao, El-Kady, Sun, Li, Zhang, Zhu (bib39) 2018; 118
Li, Cao, Qiao, Zhou, Yang, Xiao (bib42) 2014; 2
Geim (bib16) 2009; 324
Liu, Xu, Chen, Shen (bib3) 2015; 44
Xu, Schwab, Strudwick, Hennig, Feng, Wu (bib22) 2013; 3
Hu, Chen, Xie, Zou, Qin, Bao (bib41) 2014; 6
Sumboja, Foo, Wang, Lee (bib35) 2013; 25
Liu, Song, Xue, Zhang (bib20) 2012; 24
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos (bib14) 2004; 306
Liu (10.1016/j.carbon.2019.02.045_bib20) 2012; 24
Mohammadi (10.1016/j.carbon.2019.02.045_bib34) 2018; 334
Zhang (10.1016/j.carbon.2019.02.045_bib18) 2012; 12
Yang (10.1016/j.carbon.2019.02.045_bib25) 2016; 9
Simon (10.1016/j.carbon.2019.02.045_bib6) 2014; 343
Yan (10.1016/j.carbon.2019.02.045_bib7) 2014; 4
Chang (10.1016/j.carbon.2019.02.045_bib11) 2013; 23
Hu (10.1016/j.carbon.2019.02.045_bib5) 2012; 5
Yang (10.1016/j.carbon.2019.02.045_bib33) 2016; 4
Hu (10.1016/j.carbon.2019.02.045_bib41) 2014; 6
Qi (10.1016/j.carbon.2019.02.045_bib4) 2017; 29
Fan (10.1016/j.carbon.2019.02.045_bib46) 2018; 30
Sun (10.1016/j.carbon.2019.02.045_bib2) 2017; 2
Shao (10.1016/j.carbon.2019.02.045_bib39) 2018; 118
Du (10.1016/j.carbon.2019.02.045_bib27) 2014; 2
He (10.1016/j.carbon.2019.02.045_bib12) 2017; 7
Kyeremateng (10.1016/j.carbon.2019.02.045_bib1) 2017; 12
Xu (10.1016/j.carbon.2019.02.045_bib22) 2013; 3
Sumboja (10.1016/j.carbon.2019.02.045_bib35) 2013; 25
Xiang (10.1016/j.carbon.2019.02.045_bib17) 2013; 226
Wang (10.1016/j.carbon.2019.02.045_bib44) 2012; 22
Zhu (10.1016/j.carbon.2019.02.045_bib43) 2015; 273
Song (10.1016/j.carbon.2019.02.045_bib36) 2017; 5
Pardo (10.1016/j.carbon.2019.02.045_bib23) 2000; 12
Brousse (10.1016/j.carbon.2019.02.045_bib9) 2015; 162
Zhu (10.1016/j.carbon.2019.02.045_bib26) 2017; 7
Shi (10.1016/j.carbon.2019.02.045_bib10) 2015; 3
Xu (10.1016/j.carbon.2019.02.045_bib21) 2013; 7
Geim (10.1016/j.carbon.2019.02.045_bib16) 2009; 324
Shen (10.1016/j.carbon.2019.02.045_bib28) 2016; 6
Stankovich (10.1016/j.carbon.2019.02.045_bib15) 2006; 442
Li (10.1016/j.carbon.2019.02.045_bib42) 2014; 2
Kim (10.1016/j.carbon.2019.02.045_bib29) 2000; 165
Pu (10.1016/j.carbon.2019.02.045_bib8) 2016; 28
Yan (10.1016/j.carbon.2019.02.045_bib37) 2012; 22
Wu (10.1016/j.carbon.2019.02.045_bib45) 2010; 4
Chen (10.1016/j.carbon.2019.02.045_bib19) 2009; 21
Jiang (10.1016/j.carbon.2019.02.045_bib24) 2018; 6
Shi (10.1016/j.carbon.2019.02.045_bib40) 2015; 3
Gao (10.1016/j.carbon.2019.02.045_bib32) 2018; 343
Wen (10.1016/j.carbon.2019.02.045_bib30) 2017; 5
Yan (10.1016/j.carbon.2019.02.045_bib13) 2012; 22
Novoselov (10.1016/j.carbon.2019.02.045_bib14) 2004; 306
Liu (10.1016/j.carbon.2019.02.045_bib3) 2015; 44
He (10.1016/j.carbon.2019.02.045_bib31) 2017; 7
Zheng (10.1016/j.carbon.2019.02.045_bib38) 2018; 333
References_xml – volume: 23
  start-page: 5074
  year: 2013
  end-page: 5083
  ident: bib11
  article-title: Asymmetric supercapacitors based on graphene/MnO
  publication-title: Adv. Funct. Mater.
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: bib14
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 4
  start-page: 5835
  year: 2010
  end-page: 5842
  ident: bib45
  article-title: High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors
  publication-title: ACS Nano
– volume: 22
  start-page: 2632
  year: 2012
  end-page: 2641
  ident: bib13
  article-title: Advanced asymmetric supercapacitors based on Ni(OH)
  publication-title: Adv. Funct. Mater.
– volume: 324
  start-page: 1530
  year: 2009
  end-page: 1534
  ident: bib16
  article-title: Graphene: status and prospects
  publication-title: Science
– volume: 343
  start-page: 572
  year: 2018
  end-page: 582
  ident: bib32
  article-title: Porous Co
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 19318
  year: 2014
  ident: bib41
  article-title: CoNi
  publication-title: ACS Appl. Mater. Interfaces
– volume: 333
  start-page: 603
  year: 2018
  end-page: 612
  ident: bib38
  article-title: Phytic acid-assisted synthesis of ultrafine NiCo
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 1249
  year: 2000
  end-page: 1252
  ident: bib23
  article-title: Application of screen printing in the fabrication of organic light-emitting devices
  publication-title: Adv. Mater.
– volume: 25
  start-page: 2809
  year: 2013
  end-page: 2815
  ident: bib35
  article-title: Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device
  publication-title: Adv. Mater.
– volume: 2
  start-page: 17023
  year: 2017
  ident: bib2
  article-title: Energy harvesting and storage in 1D devices
  publication-title: Nat. Rev. Mater.
– volume: 7
  year: 2017
  ident: bib12
  article-title: Ultrathin and porous Ni
  publication-title: Adv. Energy Mater.
– volume: 165
  start-page: 70
  year: 2000
  end-page: 84
  ident: bib29
  article-title: Analysis of the NiCo
  publication-title: Appl. Surf. Sci.
– volume: 2
  start-page: 9613
  year: 2014
  end-page: 9619
  ident: bib27
  article-title: Facile synthesis and superior electrochemical performances of CoNi
  publication-title: J. Mater. Chem.
– volume: 29
  start-page: 1602802
  year: 2017
  ident: bib4
  article-title: Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges
  publication-title: Adv. Mater.
– volume: 4
  year: 2014
  ident: bib7
  article-title: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 20619
  year: 2015
  end-page: 20626
  ident: bib10
  article-title: Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 1035
  year: 2013
  end-page: 1040
  ident: bib22
  article-title: Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks
  publication-title: Adv. Energy Mater.
– volume: 22
  start-page: 2632
  year: 2012
  end-page: 2641
  ident: bib37
  article-title: Advanced asymmetric supercapacitors based on Ni(OH)
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1600341
  year: 2016
  ident: bib28
  article-title: CoNi
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 7144
  year: 2017
  end-page: 7152
  ident: bib30
  article-title: Facile synthesis of ultrathin NiCo
  publication-title: J. Mater. Chem.
– volume: 21
  year: 2009
  ident: bib19
  article-title: Self-assembled free-standing graphite oxide membrane
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  ident: bib31
  article-title: Ultrathin and porous Ni
  publication-title: Adv. Energy Mater.
– volume: 22
  start-page: 23114
  year: 2012
  end-page: 23119
  ident: bib44
  article-title: Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide-reduced graphite oxide composite material and its application for asymmetric supercapacitor device
  publication-title: J. Mater. Chem.
– volume: 442
  start-page: 282
  year: 2006
  end-page: 286
  ident: bib15
  article-title: Graphene-based composite materials
  publication-title: Nature
– volume: 6
  start-page: 11966
  year: 2018
  end-page: 11977
  ident: bib24
  article-title: In situ generation of CoS
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 1299
  year: 2016
  end-page: 1307
  ident: bib25
  article-title: Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors
  publication-title: Energy Environ. Sci.
– volume: 226
  start-page: 65
  year: 2013
  end-page: 70
  ident: bib17
  article-title: A reduced graphene oxide/Co
  publication-title: J. Power Sources
– volume: 5
  start-page: 6423
  year: 2012
  end-page: 6435
  ident: bib5
  article-title: Energy and environmental nanotechnology in conductive paper and textiles
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 20619
  year: 2015
  end-page: 20626
  ident: bib40
  article-title: Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors
  publication-title: J. Mater. Chem.
– volume: 273
  start-page: 584
  year: 2015
  end-page: 590
  ident: bib43
  article-title: Mesoporous NiCo
  publication-title: J. Power Sources
– volume: 28
  start-page: 98
  year: 2016
  end-page: 105
  ident: bib8
  article-title: Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1806
  year: 2012
  end-page: 1812
  ident: bib18
  article-title: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors
  publication-title: Nano Lett.
– volume: 334
  start-page: 66
  year: 2018
  end-page: 80
  ident: bib34
  article-title: Engineering RGO-CNT wrapped Co
  publication-title: Chem. Eng. J.
– volume: 24
  start-page: 1089
  year: 2012
  end-page: 1094
  ident: bib20
  article-title: Folded structured graphene paper for high performance electrode materials
  publication-title: Adv. Mater.
– volume: 12
  start-page: 7
  year: 2017
  end-page: 15
  ident: bib1
  article-title: Microsupercapacitors as miniaturized energy-storage components for on-chip electronics
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 18857
  year: 2016
  end-page: 18867
  ident: bib33
  article-title: Growth of vertically aligned Co
  publication-title: J. Mater. Chem.
– volume: 7
  start-page: 4042
  year: 2013
  end-page: 4049
  ident: bib21
  article-title: Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films
  publication-title: ACS Nano
– volume: 118
  start-page: 9233
  year: 2018
  end-page: 9280
  ident: bib39
  article-title: Design and mechanisms of asymmetric supercapacitors
  publication-title: Chem. Rev.
– volume: 162
  start-page: 5185
  year: 2015
  end-page: 5189
  ident: bib9
  article-title: To be or not to be pseudocapacitive?
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 20797
  year: 2017
  end-page: 20807
  ident: bib36
  article-title: A new strategy for integrating superior mechanical performance and high volumetric energy density into a janus graphene film for wearable solid-state supercapacitors
  publication-title: J. Mater. Chem.
– volume: 2
  start-page: 6540
  year: 2014
  end-page: 6548
  ident: bib42
  article-title: Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors
  publication-title: J. Mater. Chem.
– volume: 343
  start-page: 1210
  year: 2014
  end-page: 1211
  ident: bib6
  article-title: Where do batteries end and supercapacitors begin?
  publication-title: Science
– volume: 30
  start-page: 1800804
  year: 2018
  ident: bib46
  article-title: A nonaqueous potassium-based battery-supercapacitor hybrid device
  publication-title: Adv. Mater.
– volume: 44
  start-page: 161
  year: 2015
  end-page: 192
  ident: bib3
  article-title: Flexible electronics based on inorganic nanowires
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 1601234
  year: 2017
  ident: bib26
  article-title: Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 1806
  issue: 4
  year: 2012
  ident: 10.1016/j.carbon.2019.02.045_bib18
  article-title: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors
  publication-title: Nano Lett.
  doi: 10.1021/nl203903z
– volume: 9
  start-page: 1299
  issue: 4
  year: 2016
  ident: 10.1016/j.carbon.2019.02.045_bib25
  article-title: Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03633J
– volume: 5
  start-page: 20797
  issue: 39
  year: 2017
  ident: 10.1016/j.carbon.2019.02.045_bib36
  article-title: A new strategy for integrating superior mechanical performance and high volumetric energy density into a janus graphene film for wearable solid-state supercapacitors
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA06040H
– volume: 334
  start-page: 66
  year: 2018
  ident: 10.1016/j.carbon.2019.02.045_bib34
  article-title: Engineering RGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.029
– volume: 4
  start-page: 5835
  issue: 10
  year: 2010
  ident: 10.1016/j.carbon.2019.02.045_bib45
  article-title: High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors
  publication-title: ACS Nano
  doi: 10.1021/nn101754k
– volume: 22
  start-page: 23114
  issue: 43
  year: 2012
  ident: 10.1016/j.carbon.2019.02.045_bib44
  article-title: Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide-reduced graphite oxide composite material and its application for asymmetric supercapacitor device
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35307e
– volume: 442
  start-page: 282
  issue: 7100
  year: 2006
  ident: 10.1016/j.carbon.2019.02.045_bib15
  article-title: Graphene-based composite materials
  publication-title: Nature
  doi: 10.1038/nature04969
– volume: 29
  start-page: 1602802
  issue: 5
  year: 2017
  ident: 10.1016/j.carbon.2019.02.045_bib4
  article-title: Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602802
– volume: 21
  issue: 35
  year: 2009
  ident: 10.1016/j.carbon.2019.02.045_bib19
  article-title: Self-assembled free-standing graphite oxide membrane
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200990138
– volume: 6
  start-page: 1600341
  issue: 13
  year: 2016
  ident: 10.1016/j.carbon.2019.02.045_bib28
  article-title: CoNi2S4-graphene-2D-MoSe2 as an advanced electrode material for supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600341
– volume: 165
  start-page: 70
  issue: 1
  year: 2000
  ident: 10.1016/j.carbon.2019.02.045_bib29
  article-title: Analysis of the NiCo2O4 spinel surface with auger and X-ray photoelectron spectroscopy
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(00)00378-0
– volume: 25
  start-page: 2809
  issue: 20
  year: 2013
  ident: 10.1016/j.carbon.2019.02.045_bib35
  article-title: Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201205064
– volume: 24
  start-page: 1089
  issue: 8
  year: 2012
  ident: 10.1016/j.carbon.2019.02.045_bib20
  article-title: Folded structured graphene paper for high performance electrode materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104691
– volume: 2
  start-page: 6540
  issue: 18
  year: 2014
  ident: 10.1016/j.carbon.2019.02.045_bib42
  article-title: Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors
  publication-title: J. Mater. Chem.
  doi: 10.1039/C3TA15373H
– volume: 5
  start-page: 6423
  issue: 4
  year: 2012
  ident: 10.1016/j.carbon.2019.02.045_bib5
  article-title: Energy and environmental nanotechnology in conductive paper and textiles
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee02414d
– volume: 226
  start-page: 65
  year: 2013
  ident: 10.1016/j.carbon.2019.02.045_bib17
  article-title: A reduced graphene oxide/Co3O4 composite for supercapacitor electrode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.064
– volume: 4
  issue: 4
  year: 2014
  ident: 10.1016/j.carbon.2019.02.045_bib7
  article-title: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300816
– volume: 324
  start-page: 1530
  issue: 5934
  year: 2009
  ident: 10.1016/j.carbon.2019.02.045_bib16
  article-title: Graphene: status and prospects
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 273
  start-page: 584
  year: 2015
  ident: 10.1016/j.carbon.2019.02.045_bib43
  article-title: Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.144
– volume: 6
  start-page: 19318
  issue: 21
  year: 2014
  ident: 10.1016/j.carbon.2019.02.045_bib41
  article-title: CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5053784
– volume: 22
  start-page: 2632
  issue: 12
  year: 2012
  ident: 10.1016/j.carbon.2019.02.045_bib13
  article-title: Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102839
– volume: 343
  start-page: 572
  year: 2018
  ident: 10.1016/j.carbon.2019.02.045_bib32
  article-title: Porous Co3S4/Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.042
– volume: 6
  start-page: 11966
  year: 2018
  ident: 10.1016/j.carbon.2019.02.045_bib24
  article-title: In situ generation of CoS1.097 nanoparticles on S/N co-doped graphene/carbonized foam for mechanically tough and flexible all solid-state supercapacitors
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA04307H
– volume: 162
  start-page: 5185
  issue: 5
  year: 2015
  ident: 10.1016/j.carbon.2019.02.045_bib9
  article-title: To be or not to be pseudocapacitive?
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0201505jes
– volume: 12
  start-page: 1249
  issue: 17
  year: 2000
  ident: 10.1016/j.carbon.2019.02.045_bib23
  article-title: Application of screen printing in the fabrication of organic light-emitting devices
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200009)12:17<1249::AID-ADMA1249>3.0.CO;2-Y
– volume: 343
  start-page: 1210
  issue: 6176
  year: 2014
  ident: 10.1016/j.carbon.2019.02.045_bib6
  article-title: Where do batteries end and supercapacitors begin?
  publication-title: Science
  doi: 10.1126/science.1249625
– volume: 2
  start-page: 17023
  issue: 6
  year: 2017
  ident: 10.1016/j.carbon.2019.02.045_bib2
  article-title: Energy harvesting and storage in 1D devices
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.23
– volume: 44
  start-page: 161
  issue: 1
  year: 2015
  ident: 10.1016/j.carbon.2019.02.045_bib3
  article-title: Flexible electronics based on inorganic nanowires
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00116H
– volume: 7
  issue: 21
  year: 2017
  ident: 10.1016/j.carbon.2019.02.045_bib12
  article-title: Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700983
– volume: 7
  issue: 21
  year: 2017
  ident: 10.1016/j.carbon.2019.02.045_bib31
  article-title: Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700983
– volume: 28
  start-page: 98
  issue: 1
  year: 2016
  ident: 10.1016/j.carbon.2019.02.045_bib8
  article-title: Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504403
– volume: 23
  start-page: 5074
  issue: 40
  year: 2013
  ident: 10.1016/j.carbon.2019.02.045_bib11
  article-title: Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm201301851
– volume: 4
  start-page: 18857
  issue: 48
  year: 2016
  ident: 10.1016/j.carbon.2019.02.045_bib33
  article-title: Growth of vertically aligned Co3S4/CoMo2S4 ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA07898B
– volume: 22
  start-page: 2632
  issue: 12
  year: 2012
  ident: 10.1016/j.carbon.2019.02.045_bib37
  article-title: Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102839
– volume: 333
  start-page: 603
  year: 2018
  ident: 10.1016/j.carbon.2019.02.045_bib38
  article-title: Phytic acid-assisted synthesis of ultrafine NiCo2S4 nanoparticles immobilized on reduced graphene oxide as high-performance electrode for hybrid supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.008
– volume: 5
  start-page: 7144
  issue: 15
  year: 2017
  ident: 10.1016/j.carbon.2019.02.045_bib30
  article-title: Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA01326D
– volume: 3
  start-page: 20619
  issue: 41
  year: 2015
  ident: 10.1016/j.carbon.2019.02.045_bib40
  article-title: Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA04464B
– volume: 7
  start-page: 4042
  issue: 5
  year: 2013
  ident: 10.1016/j.carbon.2019.02.045_bib21
  article-title: Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films
  publication-title: ACS Nano
  doi: 10.1021/nn4000836
– volume: 3
  start-page: 1035
  issue: 8
  year: 2013
  ident: 10.1016/j.carbon.2019.02.045_bib22
  article-title: Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300184
– volume: 7
  start-page: 1601234
  issue: 2
  year: 2017
  ident: 10.1016/j.carbon.2019.02.045_bib26
  article-title: Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4-NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601234
– volume: 118
  start-page: 9233
  issue: 18
  year: 2018
  ident: 10.1016/j.carbon.2019.02.045_bib39
  article-title: Design and mechanisms of asymmetric supercapacitors
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00252
– volume: 12
  start-page: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.carbon.2019.02.045_bib1
  article-title: Microsupercapacitors as miniaturized energy-storage components for on-chip electronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.196
– volume: 2
  start-page: 9613
  issue: 25
  year: 2014
  ident: 10.1016/j.carbon.2019.02.045_bib27
  article-title: Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes
  publication-title: J. Mater. Chem.
  doi: 10.1039/C4TA00414K
– volume: 3
  start-page: 20619
  issue: 41
  year: 2015
  ident: 10.1016/j.carbon.2019.02.045_bib10
  article-title: Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA04464B
– volume: 306
  start-page: 666
  issue: 5696
  year: 2004
  ident: 10.1016/j.carbon.2019.02.045_bib14
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 30
  start-page: 1800804
  issue: 20
  year: 2018
  ident: 10.1016/j.carbon.2019.02.045_bib46
  article-title: A nonaqueous potassium-based battery-supercapacitor hybrid device
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800804
SSID ssj0004814
Score 2.5434446
Snippet Supercapacitors are attracting increasing research interest because they are expected to achieve battery-level energy density while having a long calendar life...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 557
SubjectTerms active sites
Batteries
capacitance
Cobalt sulfide
Cycles
electrochemistry
Electrodes
Electronic devices
electronic equipment
Electronics
energy density
Flux density
Graphene
graphene oxide
nanosheets
Production methods
Substrates
Supercapacitors
Vulcanization
Wearable computers
Wearable technology
Title Screen-printable films of graphene/CoS2/Ni3S4 composites for the fabrication of flexible and arbitrary-shaped all-solid-state hybrid supercapacitors
URI https://dx.doi.org/10.1016/j.carbon.2019.02.045
https://www.proquest.com/docview/2233942240
https://www.proquest.com/docview/2221023479
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQHHYvK2BBW14yEldv83BeR1SBuqy2ly4SN8uxx2pW3SRq2gMXfgU_mJk8QKCVKu0tce20zUxmPjvfN2bsylCOCBNPGJvHQjo8StPYE-BDkoQ6T2xKauRfs3h6L-8eoocdNhm0MESr7GN_F9PbaN23jPu7Oa6LgjS-BMcRn2QhFYEhwa-UCXn596c3modMu_re9Jqfeg_yuZbjZfQqr6gKqp-1lTtJ1PTv9PQhULfZ53affelhI7_uftkB24HykH2aDLu1fWXPc0MMGkHrdGuSQ3FXLP82vHK8rUmNIW08qebBeFaEc8mJSU50LWg4olaOKJA7na_6BTwa5ahSJl1Hl5bjHyhafb5oFroGbFguBXptYUWrSOKLR1J-8WZTw8pg_jUF7eJzxO5vb35PpqLfcUEYnLisReQbMDGAkwE2OAfOt9K6xGYQWM9ROXibpTp2IA1OrCKDYBAiAziP0RBBFh6z3bIq4RvjTvoQ6DiQ2jcy9qwmviriw9AgoAMHIxYON1qZvhw57YqxVAPv7I_qzKPIPMoLFJpnxMTrqLorx7GlfzLYUL1zK4UZY8vIs8Hkqn-sG4X-E2aSUNCIXb5-jJamtyy6hGpDfWgWTQLdk__-8lP2mc46YuUZ212vNnCO4GedX7TefcH2rn_8nM5eAObKByU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB2kziG9FF1RN2nLAr0S1kJtx8Bo4DSJL06A3AiKHCIqHMmw7EP_ox-cGS0pWhQI0JtAkdqGmnkk5z0CfLUcI-IskNaVqVSejvI8DSSGmGWxKTOXMxv5apkubtT32-T2AOYjF4bTKgff3_v0zlsPJbPha842VcUcX4bjhE-KmEVg8mdwyOpUyQQOT88vFsvf9Mi8l_jmlX5uMDLoujQva7Zlw0KoYdGJdzKv6d8R6i9f3QWgs5fwYkCO4rR_uFdwgPVrOJqPG7a9gV8ry0k0kqfqdsyIEr5a37ei8aKTpSavNps3q2i2rOKVEpxMzhlb2AoCroKAoPCm3A5zeNzKs1gmX8fUTtALVB1FX7Z3ZoNUsF5L6riVkx0pSdz9ZPKXaPcb3FoKwbbijXzews3Zt-v5Qg6bLkhLY5edTEKLNkX0KqIC79GHTjmfuQIjF3hWhHdFblKPytLYKrGEBzGxSEMZgwkW8TuY1E2N70F4FWJk0kiZ0Ko0cIZTVgkixpYwHXqcQjx-aG0HRXLeGGOtx9SzH7o3j2bz6CDSZJ4pyMdWm16R44n62WhD_UfP0hQ0nmh5MppcD392q6n_xIViIDSFL4-nydK80GJqbPZchwfSzNH98N83_wxHi-urS315vrw4hud8ps-zPIHJbrvHj4SFduWnoa8_ANnvCdY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screen-printable+films+of+graphene%2FCoS2%2FNi3S4+composites+for+the+fabrication+of+flexible+and+arbitrary-shaped+all-solid-state+hybrid+supercapacitors&rft.jtitle=Carbon+%28New+York%29&rft.au=Jiang%2C+Degang&rft.au=Liang%2C+Hui&rft.au=Yang%2C+Wenrong&rft.au=Liu%2C+Yan&rft.date=2019-05-01&rft.pub=Elsevier+BV&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=146&rft.spage=557&rft_id=info:doi/10.1016%2Fj.carbon.2019.02.045&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon