Screen-printable films of graphene/CoS2/Ni3S4 composites for the fabrication of flexible and arbitrary-shaped all-solid-state hybrid supercapacitors

Supercapacitors are attracting increasing research interest because they are expected to achieve battery-level energy density while having a long calendar life and a short charging time. However, the development of large-scale and cost-reasonable production methods for flexible, wearable and arbitra...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 146; pp. 557 - 567
Main Authors Jiang, Degang, Liang, Hui, Yang, Wenrong, Liu, Yan, Cao, Xueying, Zhang, Jingmin, Li, Chenwei, Liu, Jingquan, Gooding, J. Justin
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.05.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Supercapacitors are attracting increasing research interest because they are expected to achieve battery-level energy density while having a long calendar life and a short charging time. However, the development of large-scale and cost-reasonable production methods for flexible, wearable and arbitrary-shaped supercapacitor devices still faces enormous challenges. Herein, a 3D-network, porous graphene/CoS2/Ni3S4 (G/CoS2/Ni3S4) composite electrode has been designed and synthesized through a combination of solvothermal and vulcanization methods. By combining the networked CoS2/Ni3S4 nanoflakes with reduced graphene oxide (RGO) nanosheets, the as-prepared composite electrode exhibits good conductivity, a high density of electrochemically active sites and good cycling stability. The result is a high specific capacitance of 1739 F g−1 at a current density of 0.5 A g−1. Significantly, the arbitrary-shaped G/CoS2/Ni3S4||GF hybrid supercapacitor devices can be printed directly on different substrates, which favorably combine mechanical flexibility, good cycling performance and high energy density. This methodology may be feasible to prepare fully-printable and wearable supercapacitors, and other electronic devices in large scale, thereby holding enormous potential for wearable technologies. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2019.02.045