Super Resolution of Magnetic Resonance Images
In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework, which do not require example low resolution (LR)/high resolution (HR)/cross-modality/noise-free images and prior information of noise–noise...
Saved in:
Published in | Journal of imaging Vol. 7; no. 6; p. 101 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.06.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2313-433X 2313-433X |
DOI | 10.3390/jimaging7060101 |
Cover
Loading…
Abstract | In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework, which do not require example low resolution (LR)/high resolution (HR)/cross-modality/noise-free images and prior information of noise–noise variance. The proposed method categorizes the patches as either smooth or textured and then denoises them by deploying different denoising strategies for efficient denoising. The denoising algorithm is integrated into the SR approach, which uses a gradient profile-based constraint in a sparse representation-based framework to improve the resolution of MR images with reduced smearing of image details. This constraint regularizes the estimation of HR images such that the estimated HR image has gradient profiles similar to the gradient profiles of the original HR image. For this, the gradient profile sharpness (GPS) values of an unknown HR image are estimated using an approximated piece-wise linear relation among GPS values of LR and upsampled LR images. The experiments are performed on three different publicly available datasets. The proposed SR approach outperforms the existing unsupervised SR approach addressed for real MR images that exploits low rank and total variation (LRTV) regularization, by an average peak signal to noise ratio (PSNR) of 0.73 dB and 0.38 dB for upsampling factors 2 and 3, respectively. For the super resolution of noisy real MR images (degraded with 2% noise), the proposed approach outperforms the LRTV approach by an average PSNR of 0.54 dB and 0.46 dB for upsampling factors 2 and 3, respectively. The qualitative analysis is shown for real MR images from healthy subjects and subjects with Alzheimer’s disease and structural deformity, i.e., cavernoma. |
---|---|
AbstractList | In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework, which do not require example low resolution (LR)/high resolution (HR)/cross-modality/noise-free images and prior information of noise-noise variance. The proposed method categorizes the patches as either smooth or textured and then denoises them by deploying different denoising strategies for efficient denoising. The denoising algorithm is integrated into the SR approach, which uses a gradient profile-based constraint in a sparse representation-based framework to improve the resolution of MR images with reduced smearing of image details. This constraint regularizes the estimation of HR images such that the estimated HR image has gradient profiles similar to the gradient profiles of the original HR image. For this, the gradient profile sharpness (GPS) values of an unknown HR image are estimated using an approximated piece-wise linear relation among GPS values of LR and upsampled LR images. The experiments are performed on three different publicly available datasets. The proposed SR approach outperforms the existing unsupervised SR approach addressed for real MR images that exploits low rank and total variation (LRTV) regularization, by an average peak signal to noise ratio (PSNR) of 0.73 dB and 0.38 dB for upsampling factors 2 and 3, respectively. For the super resolution of noisy real MR images (degraded with 2% noise), the proposed approach outperforms the LRTV approach by an average PSNR of 0.54 dB and 0.46 dB for upsampling factors 2 and 3, respectively. The qualitative analysis is shown for real MR images from healthy subjects and subjects with Alzheimer's disease and structural deformity, i.e., cavernoma.In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework, which do not require example low resolution (LR)/high resolution (HR)/cross-modality/noise-free images and prior information of noise-noise variance. The proposed method categorizes the patches as either smooth or textured and then denoises them by deploying different denoising strategies for efficient denoising. The denoising algorithm is integrated into the SR approach, which uses a gradient profile-based constraint in a sparse representation-based framework to improve the resolution of MR images with reduced smearing of image details. This constraint regularizes the estimation of HR images such that the estimated HR image has gradient profiles similar to the gradient profiles of the original HR image. For this, the gradient profile sharpness (GPS) values of an unknown HR image are estimated using an approximated piece-wise linear relation among GPS values of LR and upsampled LR images. The experiments are performed on three different publicly available datasets. The proposed SR approach outperforms the existing unsupervised SR approach addressed for real MR images that exploits low rank and total variation (LRTV) regularization, by an average peak signal to noise ratio (PSNR) of 0.73 dB and 0.38 dB for upsampling factors 2 and 3, respectively. For the super resolution of noisy real MR images (degraded with 2% noise), the proposed approach outperforms the LRTV approach by an average PSNR of 0.54 dB and 0.46 dB for upsampling factors 2 and 3, respectively. The qualitative analysis is shown for real MR images from healthy subjects and subjects with Alzheimer's disease and structural deformity, i.e., cavernoma. In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework, which do not require example low resolution (LR)/high resolution (HR)/cross-modality/noise-free images and prior information of noise–noise variance. The proposed method categorizes the patches as either smooth or textured and then denoises them by deploying different denoising strategies for efficient denoising. The denoising algorithm is integrated into the SR approach, which uses a gradient profile-based constraint in a sparse representation-based framework to improve the resolution of MR images with reduced smearing of image details. This constraint regularizes the estimation of HR images such that the estimated HR image has gradient profiles similar to the gradient profiles of the original HR image. For this, the gradient profile sharpness (GPS) values of an unknown HR image are estimated using an approximated piece-wise linear relation among GPS values of LR and upsampled LR images. The experiments are performed on three different publicly available datasets. The proposed SR approach outperforms the existing unsupervised SR approach addressed for real MR images that exploits low rank and total variation (LRTV) regularization, by an average peak signal to noise ratio (PSNR) of 0.73 dB and 0.38 dB for upsampling factors 2 and 3, respectively. For the super resolution of noisy real MR images (degraded with 2% noise), the proposed approach outperforms the LRTV approach by an average PSNR of 0.54 dB and 0.46 dB for upsampling factors 2 and 3, respectively. The qualitative analysis is shown for real MR images from healthy subjects and subjects with Alzheimer’s disease and structural deformity, i.e., cavernoma. |
Author | Ahuja, Chirag Kamal Kaur, Prabhjot Sao, Anil Kumar |
AuthorAffiliation | 2 Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India; chiragkahuja@rediffmail.com 1 Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India; anil@iitmandi.ac.in |
AuthorAffiliation_xml | – name: 2 Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India; chiragkahuja@rediffmail.com – name: 1 Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India; anil@iitmandi.ac.in |
Author_xml | – sequence: 1 givenname: Prabhjot surname: Kaur fullname: Kaur, Prabhjot – sequence: 2 givenname: Anil Kumar surname: Sao fullname: Sao, Anil Kumar – sequence: 3 givenname: Chirag Kamal surname: Ahuja fullname: Ahuja, Chirag Kamal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39080889$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU2LFDEQDbLiruuevcmAFy_tJql0On0RZPFjYEXwA7yFdFJpM_QkY9It-O_N7KzL7oCHkFD13qtXeU_JSUwRCXnO6GuAnl5uwtaMIY4dlZRR9oiccWDQCIAfJ_fep-SilA2llPW8nv4JOa1sRZXqz0jzddlhXn3BkqZlDimukl99MmPEOdibcjTR4mpdR2F5Rh57MxW8uL3Pyff3775dfWyuP39YX729bqxQ3dwIyTzvugGY4tYIZBQAvEPBnYdBMsOx9dzKwRrHqeHguXQ4tL5FOzgu4JysD7oumY3e5bpo_qOTCfqmkPKoTa4GJ9SOOqq4UN75XhgDholhMJTL3mFbZ1WtNwet3TJs0VmMczbTA9GHnRh-6jH91go4g7arAq9uBXL6tWCZ9TYUi9NkIqalaKBKgoJW9hX68gi6SUuO9as0b4VQch9URb247-jOyr9UKuDyALA5lZLR30EY1fvo9VH0ldEeMWyYzT7PulKY_sv7CxMotEI |
CitedBy_id | crossref_primary_10_3390_app11178150 |
Cites_doi | 10.1002/cmr.a.21249 10.1109/ISBI.2017.7950500 10.1109/TIP.2015.2414877 10.1109/JBHI.2019.2945373 10.1109/LSP.2016.2535227 10.1109/TPAMI.2015.2439281 10.1002/mrm.24187 10.1109/TBME.2012.2223466 10.1002/mrm.1910340618 10.1016/j.compbiomed.2014.12.023 10.1016/j.media.2015.01.004 10.1002/cpa.3160420503 10.1109/ACCESS.2018.2873484 10.1002/1522-2594(200101)45:1<29::AID-MRM1005>3.0.CO;2-Z 10.1016/j.sigpro.2018.02.020 10.1109/CVPRW50498.2020.00236 10.1109/TIP.2014.2308422 10.1002/jmri.22003 10.1002/mrm.27658 10.1109/TIP.2019.2942510 10.1016/j.neucom.2015.09.125 10.1016/j.media.2008.02.004 10.1109/MSP.2019.2949470 10.1016/j.mri.2014.03.004 10.1109/TIP.2010.2050625 10.1109/TMI.2007.900319 10.1016/0167-2789(92)90242-F 10.1007/978-3-030-00928-1_13 10.1016/j.jvcir.2017.05.010 10.1016/j.media.2010.04.005 10.1016/j.media.2012.09.003 10.1016/j.media.2010.05.010 10.1049/iet-ipr.2011.0161 10.1109/TIP.2019.2921882 10.1109/ISBI.2011.5872758 10.1109/TIP.2007.901238 10.1109/TMI.2007.906087 10.1016/j.media.2010.03.001 10.1002/ima.22327 10.1002/mrm.27178 10.1002/jmri.21049 10.1016/j.patcog.2009.09.023 10.1109/TMI.2015.2437894 10.1109/TMI.2008.2007348 10.1117/12.430979 10.1093/biomet/81.3.425 10.1109/TIP.2011.2109730 10.1109/JBHI.2018.2843819 10.1109/83.791966 10.1016/j.jvcir.2015.01.007 10.1109/LSP.2011.2109039 10.1109/ISBI.2018.8363679 10.1016/j.sigpro.2016.09.017 10.1109/TIP.2003.819861 10.1016/j.media.2011.04.003 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/jimaging7060101 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2313-433X |
ExternalDocumentID | oai_doaj_org_article_d0d08248fdf94aa3a14bba0269de5b61 PMC8321357 39080889 10_3390_jimaging7060101 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Electronics and Information technology grantid: VIS-PHD-750 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ KQ8 MODMG M~E OK1 P62 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c487t-461f277b3182ca4e10333fde42df3b61a2e5f2c6bcad20a23f26deb5f5ecbd243 |
IEDL.DBID | DOA |
ISSN | 2313-433X |
IngestDate | Wed Aug 27 01:16:05 EDT 2025 Thu Aug 21 17:52:27 EDT 2025 Fri Sep 05 08:13:59 EDT 2025 Sun Jul 13 05:34:46 EDT 2025 Mon Jul 21 06:05:25 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Tue Jul 01 04:19:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | reconstruction super resolution enhancement self-similarity MRI |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c487t-461f277b3182ca4e10333fde42df3b61a2e5f2c6bcad20a23f26deb5f5ecbd243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/d0d08248fdf94aa3a14bba0269de5b61 |
PMID | 39080889 |
PQID | 2544866010 |
PQPubID | 2059558 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d0d08248fdf94aa3a14bba0269de5b61 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8321357 proquest_miscellaneous_3086383569 proquest_journals_2544866010 pubmed_primary_39080889 crossref_primary_10_3390_jimaging7060101 crossref_citationtrail_10_3390_jimaging7060101 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210621 |
PublicationDateYYYYMMDD | 2021-06-21 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210621 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of imaging |
PublicationTitleAlternate | J Imaging |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Cherukuri (ref_47) 2020; 29 Plenge (ref_1) 2012; 68 Zhu (ref_11) 2019; 29 ref_54 Guan (ref_52) 2015; 29 ref_18 Totterman (ref_45) 2001; Volume 4322 Trinh (ref_21) 2014; 23 Zhang (ref_56) 2011; 20 Xue (ref_19) 2020; 24 Rueda (ref_6) 2013; 17 Zhang (ref_50) 2015; 58 Jack (ref_53) 2008; 27 Dong (ref_9) 2016; 38 Mandal (ref_15) 2017; 132 ref_25 Zhao (ref_46) 2019; 28 Coupe (ref_57) 2008; 27 Gedamu (ref_58) 2010; 14 Nguyen (ref_31) 2013; 60 Rousseau (ref_48) 2010; 14 Rudin (ref_4) 1992; 60 Hu (ref_37) 2018; 148 Zhang (ref_14) 2010; 43 Liu (ref_42) 2014; 32 Shi (ref_12) 2015; 34 Mumford (ref_23) 1989; 42 ref_33 ref_32 Fu (ref_30) 2016; 195 Nowak (ref_39) 1999; 8 He (ref_17) 2011; 18 Tham (ref_2) 2012; 40A Lee (ref_36) 2017; 48 Yang (ref_10) 2010; 19 Buades (ref_16) 2015; 22 Buades (ref_35) 2012; 16 Coupe (ref_41) 2012; 6 Chaudhari (ref_20) 2018; 80 Collins (ref_40) 2010; 31 Peled (ref_43) 2001; 45 Parekh (ref_28) 2016; 23 Donoho (ref_24) 1994; 81 Zheng (ref_49) 2018; 6 Yan (ref_51) 2015; 24 ref_3 Ahmad (ref_26) 2020; 37 Lull (ref_34) 2008; 12 Wang (ref_55) 2004; 13 Dabov (ref_27) 2007; 16 Awate (ref_22) 2007; 26 ref_8 Buades (ref_13) 2010; 14 Does (ref_29) 2019; 81 Gudbjartsson (ref_38) 1995; 34 Shilling (ref_44) 2009; 28 ref_7 Shi (ref_5) 2019; 23 |
References_xml | – volume: 40A start-page: 306 year: 2012 ident: ref_2 article-title: Super-resolution in magnetic resonance imaging: A review publication-title: Concepts Magn. Reson. Part A doi: 10.1002/cmr.a.21249 – ident: ref_7 doi: 10.1109/ISBI.2017.7950500 – ident: ref_32 – volume: 24 start-page: 3187 year: 2015 ident: ref_51 article-title: Single Image Superresolution Based on Gradient Profile Sharpness publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2414877 – volume: 24 start-page: 377 year: 2020 ident: ref_19 article-title: Progressive Sub-Band Residual-Learning Network for MR Image Super Resolution publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2945373 – volume: 23 start-page: 493 year: 2016 ident: ref_28 article-title: Enhanced Low-Rank Matrix Approximation publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2535227 – volume: 38 start-page: 295 year: 2016 ident: ref_9 article-title: Image Super-Resolution Using Deep Convolutional Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – volume: 68 start-page: 1983 year: 2012 ident: ref_1 article-title: Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24187 – volume: 60 start-page: 78 year: 2013 ident: ref_31 article-title: Denoising MR Spectroscopic Imaging Data With Low-Rank Approximations publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2223466 – volume: 34 start-page: 910 year: 1995 ident: ref_38 article-title: The rician distribution of noisy MRI data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340618 – volume: 58 start-page: 130 year: 2015 ident: ref_50 article-title: MR image super-resolution reconstruction using sparse representation, nonlocal similarity and sparse derivative prior publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.12.023 – volume: 22 start-page: 35 year: 2015 ident: ref_16 article-title: MRI noise estimation and denoising using non-local PCA publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.01.004 – volume: 42 start-page: 577 year: 1989 ident: ref_23 article-title: Optimal approximations by piecewise smooth functions and associated variational problems publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160420503 – volume: 6 start-page: 57856 year: 2018 ident: ref_49 article-title: Multi-Contrast Brain MRI Image Super-Resolution With Gradient-Guided Edge Enhancement publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2873484 – volume: 45 start-page: 29 year: 2001 ident: ref_43 article-title: Superresolution in MRI: Application to human white matter fiber tract visualization by diffusion tensor imaging publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200101)45:1<29::AID-MRM1005>3.0.CO;2-Z – volume: 148 start-page: 157 year: 2018 ident: ref_37 article-title: Noise robust single image super-resolution using a multiscale image pyramid publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.02.020 – ident: ref_3 doi: 10.1109/CVPRW50498.2020.00236 – volume: 23 start-page: 1882 year: 2014 ident: ref_21 article-title: Novel Example-Based Method for Super-Resolution and Denoising of Medical Images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2308422 – volume: 31 start-page: 192 year: 2010 ident: ref_40 article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22003 – volume: 81 start-page: 3503 year: 2019 ident: ref_29 article-title: Evaluation of principal component analysis image denoising on multi-exponential MRI relaxometry publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27658 – volume: 29 start-page: 1368 year: 2020 ident: ref_47 article-title: Deep MR Brain Image Super-Resolution Using Spatio-Structural Priors publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2942510 – volume: 195 start-page: 30 year: 2016 ident: ref_30 article-title: 3D magnetic resonance image denoising using low-rank tensor approximation publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.125 – volume: 12 start-page: 514 year: 2008 ident: ref_34 article-title: MRI denoising using Non-Local Means publication-title: Med. Image Anal. doi: 10.1016/j.media.2008.02.004 – volume: 37 start-page: 105 year: 2020 ident: ref_26 article-title: Plug-and-Play Methods for Magnetic Resonance Imaging: Using Denoisers for Image Recovery publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2019.2949470 – volume: 32 start-page: 702 year: 2014 ident: ref_42 article-title: Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2014.03.004 – volume: 19 start-page: 2861 year: 2010 ident: ref_10 article-title: Image Super-Resolution Via Sparse Representation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2050625 – volume: 26 start-page: 1242 year: 2007 ident: ref_22 article-title: Feature-Preserving MRI Denoising: A Nonparametric Empirical Bayes Approach publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.900319 – volume: 60 start-page: 259 year: 1992 ident: ref_4 article-title: Nonlinear total variation based noise removal algorithms publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/0167-2789(92)90242-F – ident: ref_33 doi: 10.1007/978-3-030-00928-1_13 – volume: 48 start-page: 66 year: 2017 ident: ref_36 article-title: Combining self-learning based super-resolution with denoising for noisy images publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2017.05.010 – volume: 14 start-page: 594 year: 2010 ident: ref_48 article-title: A non-local approach for image super-resolution using intermodality priors publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.04.005 – volume: 17 start-page: 113 year: 2013 ident: ref_6 article-title: Single-image super-resolution of brain MR images using overcomplete dictionaries publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.09.003 – volume: 14 start-page: 784 year: 2010 ident: ref_13 article-title: Non-local MRI upsampling publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.05.010 – volume: 6 start-page: 558 year: 2012 ident: ref_41 article-title: Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising publication-title: IET Image Process. doi: 10.1049/iet-ipr.2011.0161 – volume: 28 start-page: 5649 year: 2019 ident: ref_46 article-title: Channel Splitting Network for Single MR Image Super-Resolution publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2921882 – ident: ref_25 doi: 10.1109/ISBI.2011.5872758 – volume: 16 start-page: 2080 year: 2007 ident: ref_27 article-title: Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – volume: 27 start-page: 425 year: 2008 ident: ref_57 article-title: An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.906087 – volume: 14 start-page: 483 year: 2010 ident: ref_58 article-title: Robust Rician noise estimation for MR images publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.03.001 – volume: 29 start-page: 491 year: 2019 ident: ref_11 article-title: Robust MR image super-resolution reconstruction with cross-modal edge-preserving regularization publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22327 – ident: ref_18 – volume: 80 start-page: 2139 year: 2018 ident: ref_20 article-title: Super-resolution musculoskeletal MRI using deep learning publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27178 – volume: 27 start-page: 685 year: 2008 ident: ref_53 article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 43 start-page: 1531 year: 2010 ident: ref_14 article-title: Two-stage image denoising by principal component analysis with local pixel grouping publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.09.023 – volume: 34 start-page: 2459 year: 2015 ident: ref_12 article-title: LRTV: MR Image Super-Resolution With Low-Rank and Total Variation Regularizations publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2437894 – volume: 28 start-page: 633 year: 2009 ident: ref_44 article-title: A Super-Resolution Framework for 3-D High-Resolution and High-Contrast Imaging Using 2-D Multislice MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2008.2007348 – volume: Volume 4322 start-page: 87 year: 2001 ident: ref_45 article-title: MRI isotropic resolution reconstruction from two orthogonal scans publication-title: Medical Imaging 2001: Image Processing, International Society for Optics and Photonics doi: 10.1117/12.430979 – ident: ref_54 – volume: 81 start-page: 425 year: 1994 ident: ref_24 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika doi: 10.1093/biomet/81.3.425 – volume: 20 start-page: 2378 year: 2011 ident: ref_56 article-title: FSIM: A Feature Similarity Index for Image Quality Assessment publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2109730 – volume: 23 start-page: 1129 year: 2019 ident: ref_5 article-title: MR Image Super-Resolution via Wide Residual Networks With Fixed Skip Connection publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2843819 – volume: 8 start-page: 1408 year: 1999 ident: ref_39 article-title: Wavelet-based Rician noise removal for magnetic resonance imaging publication-title: IEEE Trans. Image Process. doi: 10.1109/83.791966 – volume: 29 start-page: 1 year: 2015 ident: ref_52 article-title: No-reference blur assessment based on edge modeling publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2015.01.007 – volume: 18 start-page: 215 year: 2011 ident: ref_17 article-title: Adaptive Denoising by Singular Value Decomposition publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2011.2109039 – ident: ref_8 doi: 10.1109/ISBI.2018.8363679 – volume: 132 start-page: 134 year: 2017 ident: ref_15 article-title: Noise adaptive super-resolution from single image via non-local mean and sparse representation publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.09.017 – volume: 13 start-page: 600 year: 2004 ident: ref_55 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 16 start-page: 18 year: 2012 ident: ref_35 article-title: New methods for MRI denoising based on sparseness and self-similarity publication-title: Med. Image Anal. doi: 10.1016/j.media.2011.04.003 |
SSID | ssj0001920199 |
Score | 2.1783633 |
Snippet | In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework,... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 101 |
SubjectTerms | Algorithms Approximation Deep learning enhancement Galling Image resolution Knowledge Magnetic resonance imaging MRI Noise Noise reduction Partial differential equations Principal components analysis Qualitative analysis reconstruction Regularization self-similarity Sharpness Signal to noise ratio super resolution |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLZge4ED4k2goCBx4DI088zmhChqVZBaIaBSb9E82yJIln38f-xkdtutgGtmIjn2eMafx_kM8MZWJtVBcZYq6xn1uGI2Ss90rOtGp8TFkO84PjFHp-rzmT7LCbdFLqtc74nDRh16TznyPaLSmhqCD-9nvxl1jaLb1dxC4zbs4BY81RPY2T84-fL1KsvS4AHXNCOnj0R8v_fj8tfQ_odYY3huBbM-jgbW_r-FmjcrJq8dQYf34V6OHcsPo7EfwK3YPYS71xgFHwH7tprFeUlJ-XFJlX0qj-15R_8qDo-JYCOWn1C8uHgMp4cH3z8esdwRgXkEFkumDE-irh06ovBWRV5JKVOISoQkneFWRJ2EN87bICorZBImRKeTjt4FoeQTmHR9F59B6YX0osF4QFmLGMs3GIkFzdF9g3SVrgp4t1ZM6zNdOHWt-NkibCBNtjc0WcDbzQuzkSnj31P3SdObaURxPTzo5-dt9pg2VAHDEzVNIZGM0nLlnEXI2ISo8VsL2F3bqc1-t2ivVkkBrzfD6DF0DWK72K8WrUQUh7hcm6aAp6NZN5KgsFMq_Cqg3jL4lqjbI93lxcDKTS2fpK6f_1-sF3BHUFVMZZjguzBZzlfxJYY1S_cqr90_2ZD5kQ priority: 102 providerName: ProQuest |
Title | Super Resolution of Magnetic Resonance Images |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39080889 https://www.proquest.com/docview/2544866010 https://www.proquest.com/docview/3086383569 https://pubmed.ncbi.nlm.nih.gov/PMC8321357 https://doaj.org/article/d0d08248fdf94aa3a14bba0269de5b61 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xXOCA2AlLFSQOXAyJl6Q5AqIsEgixSNwiryyCFNH2_xnHadUiEBcOudiOMpnxaOY5kzcAezLJXG54SlwiNfE9roi0TBNh87wQzqW0Pu-4us7OH_jlo3gca_Xla8ICPXBQ3KFJDEYp3nbGFVxKJlOulETkUBgrVAA-GPPGwNRryFvwKgKXD0Ncf_j68l63_fFsMWnTAmYYhmq2_p9SzO-VkmOhp7MIC03OGB8FWZdgylbLMD_GJLgC5G7wYT9jfxgftlLcdfGVfKr8P4r1sCfWsPEFimd7q_DQOb0_OSdNJwSiEVD0Cc9SR_NcoQNSLblNE8aYM5ZT4xgqQVIrHNWZ0tLQRFLmaGasEk5YrQzlbA1mqm5lNyDWlGlaYB6AykRspQvMwIxI0W0NU4lIIjgYKqbUDU2471bxViJc8Josv2kygv3RDR-BIeP3pcde06Nlntq6HkCDl43By78MHsH20E5l42-90hOttTP_kAh2R9PoKf7zh6xsd9ArGaI3xOMiKyJYD2YdSYLCtn3BVwT5hMEnRJ2cqV6eazZu3-qJiXzzP95tC-aor5lJMkLTbZjpfw7sDiY9fdWC6XbnrAWzx6fXN7etere36rOpL6hyBRM |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2F5AAcUNgdAhgJJC5N7G63PX1AiECiGZIZIUik3Jx2LyGI2MMsQvxUvpEqL5NMBNxy9aZydVX3q17eA3ipo9RnNomZj7RhpHHFtBOGSZdlSnof83q-YzhK-4fJpyN5tALn3VkY2lbZ9Yl1R20rQ3PkW0Sl1UupfHg3_slINYpWVzsJjSYs9tzvX1iyTd8OPmL7vuJ8d-fgQ5-1qgLMIDifsSSNPc-yAoOZG524OBJCeOsSbr0o0lhzJz03aWG05ZHmwvPUukJ66UxheSLwuzdgDWGGwixa294Zff5yMaujcEBVquEQEkJFW99Pz2q5IWKpiVvpmW74q1UC_gZtr-7QvDTk7a7DnRarhu-b4LoLK668B7cvMRjeB_Z1PnaTkBYBmhAOKx8O9UlJZyPry0To4cIBmuemD-DwWnz1EFbLqnSPITRcGK4QfyRaY01nFCI_K2PsLqwoIhkF8KZzTG5aenJSyfiRY5lCnsyveDKA14sXxg0zx78f3SZPLx4jSu36QjU5ydsMzW1kEQ4lPW892Sh0nBSFxhJVWSfxXwPY7Nopb_N8ml9EZQAvFrcxQ2nZRZeumk9zgVWjQKCbqgAeNc26sASN7dFGswCypQZfMnX5Tnn6rWYBJ4kpIbON_5v1HG72D4b7-f5gtPcEbnHakROljMebsDqbzN1ThFSz4lkbxyEcX3fq_AEvrzf5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKBAkkLiYdew42RwQorSrLqWrCqjUW-r4UVqVZNmHEH-NX8dMHttuBdx6jZ1oMp6xZ-zx9wG81DzxqY0j5rk2jDiumHbSMOXSNFPeR6Le79gbJzsH8cdDdbgGv7u7MFRW2c2J9URtK0N75H2C0hoklD70fVsWsb81fDf5wYhBik5aOzqNxkR23a-fmL7N3o62cKxfCTHc_vphh7UMA8xgoD5ncRJ5kaYFGrYwOnYRl1J662JhvSySSAunvDBJYbQVXAvpRWJdobxyprAilvjda7Ce4qo46MH65vZ4__P5Dk-Gi2uWNXhCUma8f3ryvaYeIsSaqKWh6ZbCmjHgb2Hu5WrNC8vf8DbcauPW8H1jaHdgzZV34eYFNMN7wL4sJm4a0oFAY85h5cM9fVzSPcn6MYF7uHCE4rnZfTi4El09gF5Zle4RhEZIIzKMRWKtMb8zGUaBVkU4dVhZcMUDeNMpJjctVDkxZpzlmLKQJvNLmgzg9fKFSYPS8e-um6TpZTeC164fVNPjvPXW3HKLoVE88NaTjFJHcVFoTFcz6xT-awAb3Tjlrc_P8nMLDeDFshm9lY5gdOmqxSyXmEFKDHqTLICHzbAuJUFhB1R0FkC6MuAroq62lCffakRwopuSKn38f7Gew3V0mfzTaLz7BG4IKs7hCRPRBvTm04V7itHVvHjWmnEIR1ftOX8ASvU8JQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super+Resolution+of+Magnetic+Resonance+Images&rft.jtitle=Journal+of+imaging&rft.au=Kaur%2C+Prabhjot&rft.au=Sao%2C+Anil+Kumar&rft.au=Ahuja%2C+Chirag+Kamal&rft.date=2021-06-21&rft.eissn=2313-433X&rft.volume=7&rft.issue=6&rft_id=info:doi/10.3390%2Fjimaging7060101&rft_id=info%3Apmid%2F39080889&rft.externalDocID=39080889 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon |