Super Resolution of Magnetic Resonance Images

In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework, which do not require example low resolution (LR)/high resolution (HR)/cross-modality/noise-free images and prior information of noise–noise...

Full description

Saved in:
Bibliographic Details
Published inJournal of imaging Vol. 7; no. 6; p. 101
Main Authors Kaur, Prabhjot, Sao, Anil Kumar, Ahuja, Chirag Kamal
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.06.2021
MDPI
Subjects
Online AccessGet full text
ISSN2313-433X
2313-433X
DOI10.3390/jimaging7060101

Cover

Loading…
Abstract In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework, which do not require example low resolution (LR)/high resolution (HR)/cross-modality/noise-free images and prior information of noise–noise variance. The proposed method categorizes the patches as either smooth or textured and then denoises them by deploying different denoising strategies for efficient denoising. The denoising algorithm is integrated into the SR approach, which uses a gradient profile-based constraint in a sparse representation-based framework to improve the resolution of MR images with reduced smearing of image details. This constraint regularizes the estimation of HR images such that the estimated HR image has gradient profiles similar to the gradient profiles of the original HR image. For this, the gradient profile sharpness (GPS) values of an unknown HR image are estimated using an approximated piece-wise linear relation among GPS values of LR and upsampled LR images. The experiments are performed on three different publicly available datasets. The proposed SR approach outperforms the existing unsupervised SR approach addressed for real MR images that exploits low rank and total variation (LRTV) regularization, by an average peak signal to noise ratio (PSNR) of 0.73 dB and 0.38 dB for upsampling factors 2 and 3, respectively. For the super resolution of noisy real MR images (degraded with 2% noise), the proposed approach outperforms the LRTV approach by an average PSNR of 0.54 dB and 0.46 dB for upsampling factors 2 and 3, respectively. The qualitative analysis is shown for real MR images from healthy subjects and subjects with Alzheimer’s disease and structural deformity, i.e., cavernoma.
AbstractList In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework, which do not require example low resolution (LR)/high resolution (HR)/cross-modality/noise-free images and prior information of noise-noise variance. The proposed method categorizes the patches as either smooth or textured and then denoises them by deploying different denoising strategies for efficient denoising. The denoising algorithm is integrated into the SR approach, which uses a gradient profile-based constraint in a sparse representation-based framework to improve the resolution of MR images with reduced smearing of image details. This constraint regularizes the estimation of HR images such that the estimated HR image has gradient profiles similar to the gradient profiles of the original HR image. For this, the gradient profile sharpness (GPS) values of an unknown HR image are estimated using an approximated piece-wise linear relation among GPS values of LR and upsampled LR images. The experiments are performed on three different publicly available datasets. The proposed SR approach outperforms the existing unsupervised SR approach addressed for real MR images that exploits low rank and total variation (LRTV) regularization, by an average peak signal to noise ratio (PSNR) of 0.73 dB and 0.38 dB for upsampling factors 2 and 3, respectively. For the super resolution of noisy real MR images (degraded with 2% noise), the proposed approach outperforms the LRTV approach by an average PSNR of 0.54 dB and 0.46 dB for upsampling factors 2 and 3, respectively. The qualitative analysis is shown for real MR images from healthy subjects and subjects with Alzheimer's disease and structural deformity, i.e., cavernoma.In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework, which do not require example low resolution (LR)/high resolution (HR)/cross-modality/noise-free images and prior information of noise-noise variance. The proposed method categorizes the patches as either smooth or textured and then denoises them by deploying different denoising strategies for efficient denoising. The denoising algorithm is integrated into the SR approach, which uses a gradient profile-based constraint in a sparse representation-based framework to improve the resolution of MR images with reduced smearing of image details. This constraint regularizes the estimation of HR images such that the estimated HR image has gradient profiles similar to the gradient profiles of the original HR image. For this, the gradient profile sharpness (GPS) values of an unknown HR image are estimated using an approximated piece-wise linear relation among GPS values of LR and upsampled LR images. The experiments are performed on three different publicly available datasets. The proposed SR approach outperforms the existing unsupervised SR approach addressed for real MR images that exploits low rank and total variation (LRTV) regularization, by an average peak signal to noise ratio (PSNR) of 0.73 dB and 0.38 dB for upsampling factors 2 and 3, respectively. For the super resolution of noisy real MR images (degraded with 2% noise), the proposed approach outperforms the LRTV approach by an average PSNR of 0.54 dB and 0.46 dB for upsampling factors 2 and 3, respectively. The qualitative analysis is shown for real MR images from healthy subjects and subjects with Alzheimer's disease and structural deformity, i.e., cavernoma.
In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework, which do not require example low resolution (LR)/high resolution (HR)/cross-modality/noise-free images and prior information of noise–noise variance. The proposed method categorizes the patches as either smooth or textured and then denoises them by deploying different denoising strategies for efficient denoising. The denoising algorithm is integrated into the SR approach, which uses a gradient profile-based constraint in a sparse representation-based framework to improve the resolution of MR images with reduced smearing of image details. This constraint regularizes the estimation of HR images such that the estimated HR image has gradient profiles similar to the gradient profiles of the original HR image. For this, the gradient profile sharpness (GPS) values of an unknown HR image are estimated using an approximated piece-wise linear relation among GPS values of LR and upsampled LR images. The experiments are performed on three different publicly available datasets. The proposed SR approach outperforms the existing unsupervised SR approach addressed for real MR images that exploits low rank and total variation (LRTV) regularization, by an average peak signal to noise ratio (PSNR) of 0.73 dB and 0.38 dB for upsampling factors 2 and 3, respectively. For the super resolution of noisy real MR images (degraded with 2% noise), the proposed approach outperforms the LRTV approach by an average PSNR of 0.54 dB and 0.46 dB for upsampling factors 2 and 3, respectively. The qualitative analysis is shown for real MR images from healthy subjects and subjects with Alzheimer’s disease and structural deformity, i.e., cavernoma.
Author Ahuja, Chirag Kamal
Kaur, Prabhjot
Sao, Anil Kumar
AuthorAffiliation 2 Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India; chiragkahuja@rediffmail.com
1 Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India; anil@iitmandi.ac.in
AuthorAffiliation_xml – name: 2 Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India; chiragkahuja@rediffmail.com
– name: 1 Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India; anil@iitmandi.ac.in
Author_xml – sequence: 1
  givenname: Prabhjot
  surname: Kaur
  fullname: Kaur, Prabhjot
– sequence: 2
  givenname: Anil Kumar
  surname: Sao
  fullname: Sao, Anil Kumar
– sequence: 3
  givenname: Chirag Kamal
  surname: Ahuja
  fullname: Ahuja, Chirag Kamal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39080889$$D View this record in MEDLINE/PubMed
BookMark eNp1UU2LFDEQDbLiruuevcmAFy_tJql0On0RZPFjYEXwA7yFdFJpM_QkY9It-O_N7KzL7oCHkFD13qtXeU_JSUwRCXnO6GuAnl5uwtaMIY4dlZRR9oiccWDQCIAfJ_fep-SilA2llPW8nv4JOa1sRZXqz0jzddlhXn3BkqZlDimukl99MmPEOdibcjTR4mpdR2F5Rh57MxW8uL3Pyff3775dfWyuP39YX729bqxQ3dwIyTzvugGY4tYIZBQAvEPBnYdBMsOx9dzKwRrHqeHguXQ4tL5FOzgu4JysD7oumY3e5bpo_qOTCfqmkPKoTa4GJ9SOOqq4UN75XhgDholhMJTL3mFbZ1WtNwet3TJs0VmMczbTA9GHnRh-6jH91go4g7arAq9uBXL6tWCZ9TYUi9NkIqalaKBKgoJW9hX68gi6SUuO9as0b4VQch9URb247-jOyr9UKuDyALA5lZLR30EY1fvo9VH0ldEeMWyYzT7PulKY_sv7CxMotEI
CitedBy_id crossref_primary_10_3390_app11178150
Cites_doi 10.1002/cmr.a.21249
10.1109/ISBI.2017.7950500
10.1109/TIP.2015.2414877
10.1109/JBHI.2019.2945373
10.1109/LSP.2016.2535227
10.1109/TPAMI.2015.2439281
10.1002/mrm.24187
10.1109/TBME.2012.2223466
10.1002/mrm.1910340618
10.1016/j.compbiomed.2014.12.023
10.1016/j.media.2015.01.004
10.1002/cpa.3160420503
10.1109/ACCESS.2018.2873484
10.1002/1522-2594(200101)45:1<29::AID-MRM1005>3.0.CO;2-Z
10.1016/j.sigpro.2018.02.020
10.1109/CVPRW50498.2020.00236
10.1109/TIP.2014.2308422
10.1002/jmri.22003
10.1002/mrm.27658
10.1109/TIP.2019.2942510
10.1016/j.neucom.2015.09.125
10.1016/j.media.2008.02.004
10.1109/MSP.2019.2949470
10.1016/j.mri.2014.03.004
10.1109/TIP.2010.2050625
10.1109/TMI.2007.900319
10.1016/0167-2789(92)90242-F
10.1007/978-3-030-00928-1_13
10.1016/j.jvcir.2017.05.010
10.1016/j.media.2010.04.005
10.1016/j.media.2012.09.003
10.1016/j.media.2010.05.010
10.1049/iet-ipr.2011.0161
10.1109/TIP.2019.2921882
10.1109/ISBI.2011.5872758
10.1109/TIP.2007.901238
10.1109/TMI.2007.906087
10.1016/j.media.2010.03.001
10.1002/ima.22327
10.1002/mrm.27178
10.1002/jmri.21049
10.1016/j.patcog.2009.09.023
10.1109/TMI.2015.2437894
10.1109/TMI.2008.2007348
10.1117/12.430979
10.1093/biomet/81.3.425
10.1109/TIP.2011.2109730
10.1109/JBHI.2018.2843819
10.1109/83.791966
10.1016/j.jvcir.2015.01.007
10.1109/LSP.2011.2109039
10.1109/ISBI.2018.8363679
10.1016/j.sigpro.2016.09.017
10.1109/TIP.2003.819861
10.1016/j.media.2011.04.003
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jimaging7060101
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-433X
ExternalDocumentID oai_doaj_org_article_d0d08248fdf94aa3a14bba0269de5b61
PMC8321357
39080889
10_3390_jimaging7060101
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Electronics and Information technology
  grantid: VIS-PHD-750
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KQ8
MODMG
M~E
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c487t-461f277b3182ca4e10333fde42df3b61a2e5f2c6bcad20a23f26deb5f5ecbd243
IEDL.DBID DOA
ISSN 2313-433X
IngestDate Wed Aug 27 01:16:05 EDT 2025
Thu Aug 21 17:52:27 EDT 2025
Fri Sep 05 08:13:59 EDT 2025
Sun Jul 13 05:34:46 EDT 2025
Mon Jul 21 06:05:25 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
Tue Jul 01 04:19:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords reconstruction
super resolution
enhancement
self-similarity
MRI
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c487t-461f277b3182ca4e10333fde42df3b61a2e5f2c6bcad20a23f26deb5f5ecbd243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/d0d08248fdf94aa3a14bba0269de5b61
PMID 39080889
PQID 2544866010
PQPubID 2059558
ParticipantIDs doaj_primary_oai_doaj_org_article_d0d08248fdf94aa3a14bba0269de5b61
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8321357
proquest_miscellaneous_3086383569
proquest_journals_2544866010
pubmed_primary_39080889
crossref_primary_10_3390_jimaging7060101
crossref_citationtrail_10_3390_jimaging7060101
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210621
PublicationDateYYYYMMDD 2021-06-21
PublicationDate_xml – month: 6
  year: 2021
  text: 20210621
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of imaging
PublicationTitleAlternate J Imaging
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Cherukuri (ref_47) 2020; 29
Plenge (ref_1) 2012; 68
Zhu (ref_11) 2019; 29
ref_54
Guan (ref_52) 2015; 29
ref_18
Totterman (ref_45) 2001; Volume 4322
Trinh (ref_21) 2014; 23
Zhang (ref_56) 2011; 20
Xue (ref_19) 2020; 24
Rueda (ref_6) 2013; 17
Zhang (ref_50) 2015; 58
Jack (ref_53) 2008; 27
Dong (ref_9) 2016; 38
Mandal (ref_15) 2017; 132
ref_25
Zhao (ref_46) 2019; 28
Coupe (ref_57) 2008; 27
Gedamu (ref_58) 2010; 14
Nguyen (ref_31) 2013; 60
Rousseau (ref_48) 2010; 14
Rudin (ref_4) 1992; 60
Hu (ref_37) 2018; 148
Zhang (ref_14) 2010; 43
Liu (ref_42) 2014; 32
Shi (ref_12) 2015; 34
Mumford (ref_23) 1989; 42
ref_33
ref_32
Fu (ref_30) 2016; 195
Nowak (ref_39) 1999; 8
He (ref_17) 2011; 18
Tham (ref_2) 2012; 40A
Lee (ref_36) 2017; 48
Yang (ref_10) 2010; 19
Buades (ref_16) 2015; 22
Buades (ref_35) 2012; 16
Coupe (ref_41) 2012; 6
Chaudhari (ref_20) 2018; 80
Collins (ref_40) 2010; 31
Peled (ref_43) 2001; 45
Parekh (ref_28) 2016; 23
Donoho (ref_24) 1994; 81
Zheng (ref_49) 2018; 6
Yan (ref_51) 2015; 24
ref_3
Ahmad (ref_26) 2020; 37
Lull (ref_34) 2008; 12
Wang (ref_55) 2004; 13
Dabov (ref_27) 2007; 16
Awate (ref_22) 2007; 26
ref_8
Buades (ref_13) 2010; 14
Does (ref_29) 2019; 81
Gudbjartsson (ref_38) 1995; 34
Shilling (ref_44) 2009; 28
ref_7
Shi (ref_5) 2019; 23
References_xml – volume: 40A
  start-page: 306
  year: 2012
  ident: ref_2
  article-title: Super-resolution in magnetic resonance imaging: A review
  publication-title: Concepts Magn. Reson. Part A
  doi: 10.1002/cmr.a.21249
– ident: ref_7
  doi: 10.1109/ISBI.2017.7950500
– ident: ref_32
– volume: 24
  start-page: 3187
  year: 2015
  ident: ref_51
  article-title: Single Image Superresolution Based on Gradient Profile Sharpness
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2414877
– volume: 24
  start-page: 377
  year: 2020
  ident: ref_19
  article-title: Progressive Sub-Band Residual-Learning Network for MR Image Super Resolution
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2945373
– volume: 23
  start-page: 493
  year: 2016
  ident: ref_28
  article-title: Enhanced Low-Rank Matrix Approximation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2535227
– volume: 38
  start-page: 295
  year: 2016
  ident: ref_9
  article-title: Image Super-Resolution Using Deep Convolutional Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 68
  start-page: 1983
  year: 2012
  ident: ref_1
  article-title: Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time?
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24187
– volume: 60
  start-page: 78
  year: 2013
  ident: ref_31
  article-title: Denoising MR Spectroscopic Imaging Data With Low-Rank Approximations
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2223466
– volume: 34
  start-page: 910
  year: 1995
  ident: ref_38
  article-title: The rician distribution of noisy MRI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340618
– volume: 58
  start-page: 130
  year: 2015
  ident: ref_50
  article-title: MR image super-resolution reconstruction using sparse representation, nonlocal similarity and sparse derivative prior
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.12.023
– volume: 22
  start-page: 35
  year: 2015
  ident: ref_16
  article-title: MRI noise estimation and denoising using non-local PCA
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.01.004
– volume: 42
  start-page: 577
  year: 1989
  ident: ref_23
  article-title: Optimal approximations by piecewise smooth functions and associated variational problems
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160420503
– volume: 6
  start-page: 57856
  year: 2018
  ident: ref_49
  article-title: Multi-Contrast Brain MRI Image Super-Resolution With Gradient-Guided Edge Enhancement
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873484
– volume: 45
  start-page: 29
  year: 2001
  ident: ref_43
  article-title: Superresolution in MRI: Application to human white matter fiber tract visualization by diffusion tensor imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200101)45:1<29::AID-MRM1005>3.0.CO;2-Z
– volume: 148
  start-page: 157
  year: 2018
  ident: ref_37
  article-title: Noise robust single image super-resolution using a multiscale image pyramid
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.02.020
– ident: ref_3
  doi: 10.1109/CVPRW50498.2020.00236
– volume: 23
  start-page: 1882
  year: 2014
  ident: ref_21
  article-title: Novel Example-Based Method for Super-Resolution and Denoising of Medical Images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2308422
– volume: 31
  start-page: 192
  year: 2010
  ident: ref_40
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22003
– volume: 81
  start-page: 3503
  year: 2019
  ident: ref_29
  article-title: Evaluation of principal component analysis image denoising on multi-exponential MRI relaxometry
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27658
– volume: 29
  start-page: 1368
  year: 2020
  ident: ref_47
  article-title: Deep MR Brain Image Super-Resolution Using Spatio-Structural Priors
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2942510
– volume: 195
  start-page: 30
  year: 2016
  ident: ref_30
  article-title: 3D magnetic resonance image denoising using low-rank tensor approximation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.125
– volume: 12
  start-page: 514
  year: 2008
  ident: ref_34
  article-title: MRI denoising using Non-Local Means
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2008.02.004
– volume: 37
  start-page: 105
  year: 2020
  ident: ref_26
  article-title: Plug-and-Play Methods for Magnetic Resonance Imaging: Using Denoisers for Image Recovery
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2019.2949470
– volume: 32
  start-page: 702
  year: 2014
  ident: ref_42
  article-title: Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2014.03.004
– volume: 19
  start-page: 2861
  year: 2010
  ident: ref_10
  article-title: Image Super-Resolution Via Sparse Representation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2050625
– volume: 26
  start-page: 1242
  year: 2007
  ident: ref_22
  article-title: Feature-Preserving MRI Denoising: A Nonparametric Empirical Bayes Approach
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.900319
– volume: 60
  start-page: 259
  year: 1992
  ident: ref_4
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/0167-2789(92)90242-F
– ident: ref_33
  doi: 10.1007/978-3-030-00928-1_13
– volume: 48
  start-page: 66
  year: 2017
  ident: ref_36
  article-title: Combining self-learning based super-resolution with denoising for noisy images
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2017.05.010
– volume: 14
  start-page: 594
  year: 2010
  ident: ref_48
  article-title: A non-local approach for image super-resolution using intermodality priors
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.04.005
– volume: 17
  start-page: 113
  year: 2013
  ident: ref_6
  article-title: Single-image super-resolution of brain MR images using overcomplete dictionaries
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.09.003
– volume: 14
  start-page: 784
  year: 2010
  ident: ref_13
  article-title: Non-local MRI upsampling
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.05.010
– volume: 6
  start-page: 558
  year: 2012
  ident: ref_41
  article-title: Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2011.0161
– volume: 28
  start-page: 5649
  year: 2019
  ident: ref_46
  article-title: Channel Splitting Network for Single MR Image Super-Resolution
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2921882
– ident: ref_25
  doi: 10.1109/ISBI.2011.5872758
– volume: 16
  start-page: 2080
  year: 2007
  ident: ref_27
  article-title: Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– volume: 27
  start-page: 425
  year: 2008
  ident: ref_57
  article-title: An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.906087
– volume: 14
  start-page: 483
  year: 2010
  ident: ref_58
  article-title: Robust Rician noise estimation for MR images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.03.001
– volume: 29
  start-page: 491
  year: 2019
  ident: ref_11
  article-title: Robust MR image super-resolution reconstruction with cross-modal edge-preserving regularization
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22327
– ident: ref_18
– volume: 80
  start-page: 2139
  year: 2018
  ident: ref_20
  article-title: Super-resolution musculoskeletal MRI using deep learning
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27178
– volume: 27
  start-page: 685
  year: 2008
  ident: ref_53
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 43
  start-page: 1531
  year: 2010
  ident: ref_14
  article-title: Two-stage image denoising by principal component analysis with local pixel grouping
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.09.023
– volume: 34
  start-page: 2459
  year: 2015
  ident: ref_12
  article-title: LRTV: MR Image Super-Resolution With Low-Rank and Total Variation Regularizations
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2437894
– volume: 28
  start-page: 633
  year: 2009
  ident: ref_44
  article-title: A Super-Resolution Framework for 3-D High-Resolution and High-Contrast Imaging Using 2-D Multislice MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2008.2007348
– volume: Volume 4322
  start-page: 87
  year: 2001
  ident: ref_45
  article-title: MRI isotropic resolution reconstruction from two orthogonal scans
  publication-title: Medical Imaging 2001: Image Processing, International Society for Optics and Photonics
  doi: 10.1117/12.430979
– ident: ref_54
– volume: 81
  start-page: 425
  year: 1994
  ident: ref_24
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
– volume: 20
  start-page: 2378
  year: 2011
  ident: ref_56
  article-title: FSIM: A Feature Similarity Index for Image Quality Assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2109730
– volume: 23
  start-page: 1129
  year: 2019
  ident: ref_5
  article-title: MR Image Super-Resolution via Wide Residual Networks With Fixed Skip Connection
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2843819
– volume: 8
  start-page: 1408
  year: 1999
  ident: ref_39
  article-title: Wavelet-based Rician noise removal for magnetic resonance imaging
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.791966
– volume: 29
  start-page: 1
  year: 2015
  ident: ref_52
  article-title: No-reference blur assessment based on edge modeling
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.01.007
– volume: 18
  start-page: 215
  year: 2011
  ident: ref_17
  article-title: Adaptive Denoising by Singular Value Decomposition
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2011.2109039
– ident: ref_8
  doi: 10.1109/ISBI.2018.8363679
– volume: 132
  start-page: 134
  year: 2017
  ident: ref_15
  article-title: Noise adaptive super-resolution from single image via non-local mean and sparse representation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.09.017
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_55
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 16
  start-page: 18
  year: 2012
  ident: ref_35
  article-title: New methods for MRI denoising based on sparseness and self-similarity
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2011.04.003
SSID ssj0001920199
Score 2.1783633
Snippet In this work, novel denoising and super resolution (SR) approaches for magnetic resonance (MR) images are addressed, and are integrated in a unified framework,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 101
SubjectTerms Algorithms
Approximation
Deep learning
enhancement
Galling
Image resolution
Knowledge
Magnetic resonance imaging
MRI
Noise
Noise reduction
Partial differential equations
Principal components analysis
Qualitative analysis
reconstruction
Regularization
self-similarity
Sharpness
Signal to noise ratio
super resolution
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLZge4ED4k2goCBx4DI088zmhChqVZBaIaBSb9E82yJIln38f-xkdtutgGtmIjn2eMafx_kM8MZWJtVBcZYq6xn1uGI2Ss90rOtGp8TFkO84PjFHp-rzmT7LCbdFLqtc74nDRh16TznyPaLSmhqCD-9nvxl1jaLb1dxC4zbs4BY81RPY2T84-fL1KsvS4AHXNCOnj0R8v_fj8tfQ_odYY3huBbM-jgbW_r-FmjcrJq8dQYf34V6OHcsPo7EfwK3YPYS71xgFHwH7tprFeUlJ-XFJlX0qj-15R_8qDo-JYCOWn1C8uHgMp4cH3z8esdwRgXkEFkumDE-irh06ovBWRV5JKVOISoQkneFWRJ2EN87bICorZBImRKeTjt4FoeQTmHR9F59B6YX0osF4QFmLGMs3GIkFzdF9g3SVrgp4t1ZM6zNdOHWt-NkibCBNtjc0WcDbzQuzkSnj31P3SdObaURxPTzo5-dt9pg2VAHDEzVNIZGM0nLlnEXI2ISo8VsL2F3bqc1-t2ivVkkBrzfD6DF0DWK72K8WrUQUh7hcm6aAp6NZN5KgsFMq_Cqg3jL4lqjbI93lxcDKTS2fpK6f_1-sF3BHUFVMZZjguzBZzlfxJYY1S_cqr90_2ZD5kQ
  priority: 102
  providerName: ProQuest
Title Super Resolution of Magnetic Resonance Images
URI https://www.ncbi.nlm.nih.gov/pubmed/39080889
https://www.proquest.com/docview/2544866010
https://www.proquest.com/docview/3086383569
https://pubmed.ncbi.nlm.nih.gov/PMC8321357
https://doaj.org/article/d0d08248fdf94aa3a14bba0269de5b61
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB2xXOCA2AlLFSQOXAyJl6Q5AqIsEgixSNwiryyCFNH2_xnHadUiEBcOudiOMpnxaOY5kzcAezLJXG54SlwiNfE9roi0TBNh87wQzqW0Pu-4us7OH_jlo3gca_Xla8ICPXBQ3KFJDEYp3nbGFVxKJlOulETkUBgrVAA-GPPGwNRryFvwKgKXD0Ncf_j68l63_fFsMWnTAmYYhmq2_p9SzO-VkmOhp7MIC03OGB8FWZdgylbLMD_GJLgC5G7wYT9jfxgftlLcdfGVfKr8P4r1sCfWsPEFimd7q_DQOb0_OSdNJwSiEVD0Cc9SR_NcoQNSLblNE8aYM5ZT4xgqQVIrHNWZ0tLQRFLmaGasEk5YrQzlbA1mqm5lNyDWlGlaYB6AykRspQvMwIxI0W0NU4lIIjgYKqbUDU2471bxViJc8Josv2kygv3RDR-BIeP3pcde06Nlntq6HkCDl43By78MHsH20E5l42-90hOttTP_kAh2R9PoKf7zh6xsd9ArGaI3xOMiKyJYD2YdSYLCtn3BVwT5hMEnRJ2cqV6eazZu3-qJiXzzP95tC-aor5lJMkLTbZjpfw7sDiY9fdWC6XbnrAWzx6fXN7etere36rOpL6hyBRM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2F5AAcUNgdAhgJJC5N7G63PX1AiECiGZIZIUik3Jx2LyGI2MMsQvxUvpEqL5NMBNxy9aZydVX3q17eA3ipo9RnNomZj7RhpHHFtBOGSZdlSnof83q-YzhK-4fJpyN5tALn3VkY2lbZ9Yl1R20rQ3PkW0Sl1UupfHg3_slINYpWVzsJjSYs9tzvX1iyTd8OPmL7vuJ8d-fgQ5-1qgLMIDifsSSNPc-yAoOZG524OBJCeOsSbr0o0lhzJz03aWG05ZHmwvPUukJ66UxheSLwuzdgDWGGwixa294Zff5yMaujcEBVquEQEkJFW99Pz2q5IWKpiVvpmW74q1UC_gZtr-7QvDTk7a7DnRarhu-b4LoLK668B7cvMRjeB_Z1PnaTkBYBmhAOKx8O9UlJZyPry0To4cIBmuemD-DwWnz1EFbLqnSPITRcGK4QfyRaY01nFCI_K2PsLqwoIhkF8KZzTG5aenJSyfiRY5lCnsyveDKA14sXxg0zx78f3SZPLx4jSu36QjU5ydsMzW1kEQ4lPW892Sh0nBSFxhJVWSfxXwPY7Nopb_N8ml9EZQAvFrcxQ2nZRZeumk9zgVWjQKCbqgAeNc26sASN7dFGswCypQZfMnX5Tnn6rWYBJ4kpIbON_5v1HG72D4b7-f5gtPcEbnHakROljMebsDqbzN1ThFSz4lkbxyEcX3fq_AEvrzf5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKBAkkLiYdew42RwQorSrLqWrCqjUW-r4UVqVZNmHEH-NX8dMHttuBdx6jZ1oMp6xZ-zx9wG81DzxqY0j5rk2jDiumHbSMOXSNFPeR6Le79gbJzsH8cdDdbgGv7u7MFRW2c2J9URtK0N75H2C0hoklD70fVsWsb81fDf5wYhBik5aOzqNxkR23a-fmL7N3o62cKxfCTHc_vphh7UMA8xgoD5ncRJ5kaYFGrYwOnYRl1J662JhvSySSAunvDBJYbQVXAvpRWJdobxyprAilvjda7Ce4qo46MH65vZ4__P5Dk-Gi2uWNXhCUma8f3ryvaYeIsSaqKWh6ZbCmjHgb2Hu5WrNC8vf8DbcauPW8H1jaHdgzZV34eYFNMN7wL4sJm4a0oFAY85h5cM9fVzSPcn6MYF7uHCE4rnZfTi4El09gF5Zle4RhEZIIzKMRWKtMb8zGUaBVkU4dVhZcMUDeNMpJjctVDkxZpzlmLKQJvNLmgzg9fKFSYPS8e-um6TpZTeC164fVNPjvPXW3HKLoVE88NaTjFJHcVFoTFcz6xT-awAb3Tjlrc_P8nMLDeDFshm9lY5gdOmqxSyXmEFKDHqTLICHzbAuJUFhB1R0FkC6MuAroq62lCffakRwopuSKn38f7Gew3V0mfzTaLz7BG4IKs7hCRPRBvTm04V7itHVvHjWmnEIR1ftOX8ASvU8JQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super+Resolution+of+Magnetic+Resonance+Images&rft.jtitle=Journal+of+imaging&rft.au=Kaur%2C+Prabhjot&rft.au=Sao%2C+Anil+Kumar&rft.au=Ahuja%2C+Chirag+Kamal&rft.date=2021-06-21&rft.eissn=2313-433X&rft.volume=7&rft.issue=6&rft_id=info:doi/10.3390%2Fjimaging7060101&rft_id=info%3Apmid%2F39080889&rft.externalDocID=39080889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon