Robustness of the quadratic partial eigenvalue assignment using spectrum sensitivities for state and derivative feedback designs

Based on the notions of spectrum sensitivities, proposed by us earlier, we develop a novel optimization approach to deal with robustness in the closed-loop eigenvalues for partial quadratic eigenvalue assignment problem arising in active vibration control. A distinguished feature of this new approac...

Full description

Saved in:
Bibliographic Details
Published inJournal of low frequency noise, vibration, and active control Vol. 37; no. 2; pp. 253 - 268
Main Authors Araújo, José M, Dórea, Carlos ET, Gonçalves, Luiz MG, Carvalho, João BP, Datta, Biswa N
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.06.2018
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on the notions of spectrum sensitivities, proposed by us earlier, we develop a novel optimization approach to deal with robustness in the closed-loop eigenvalues for partial quadratic eigenvalue assignment problem arising in active vibration control. A distinguished feature of this new approach is that the objective function is composed of only the system and the closed-loop feedback matrices. It does not need an explicit knowledge of the eigenvalues and eigenvectors. Furthermore, the approach is applicable to both the state-feedback and derivative feedback designs. These features make the approach viable to design an active vibration controller for practical applications to large real-life structures. A comparative study with existing algorithms and a study on the transient response of a real-life system demonstrate the effectiveness, superiority, and competitiveness of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1461-3484
2048-4046
DOI:10.1177/1461348418755614