Finite element analysis of balloon-expandable coronary stent deployment: Influence of angioplasty balloon configuration

SUMMARYToday, the majority of coronary stents are balloon‐expandable and are deployed using a balloon‐tipped catheter. To improve deliverability, the membrane of the angioplasty balloon is typically folded about the catheter in a pleated configuration. As such, the deployment of the angioplasty ball...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in biomedical engineering Vol. 29; no. 11; pp. 1161 - 1175
Main Authors Martin, David, Boyle, Fergal
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.11.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARYToday, the majority of coronary stents are balloon‐expandable and are deployed using a balloon‐tipped catheter. To improve deliverability, the membrane of the angioplasty balloon is typically folded about the catheter in a pleated configuration. As such, the deployment of the angioplasty balloon is governed by the material properties of the balloon membrane, its folded configuration and its attachment to the catheter. Despite this observation, however, an optimum strategy for modelling the configuration of the angioplasty balloon in finite element studies of coronary stent deployment has not been identified, and idealised models of the angioplasty balloon are commonly employed in the literature. These idealised models often neglect complex geometrical features, such as the folded configuration of the balloon membrane and its attachment to the catheter, which may have a significant influence on the deployment of a stent. In this study, three increasingly sophisticated models of a typical semi‐compliant angioplasty balloon were employed to determine the influence of angioplasty balloon configuration on the deployment of a stent. The results of this study indicate that angioplasty balloon configuration has a significant influence on both the transient behaviour of the stent and its impact on the mechanical environment of the coronary artery. Copyright © 2013 John Wiley & Sons, Ltd. To date, an optimum strategy for modelling the configuration of the angioplasty balloon in finite element studies of balloon‐expandable coronary stent deployment has not been identified. In this study, three increasingly sophisticated models of a typical semi‐compliant angioplasty balloon were employed to determine the influence of angioplasty balloon configuration on the deployment of a stent. The results of this study indicate that angioplasty balloon configuration has a significant influence on both the transient behaviour of the stent and its impact on the mechanical environment of the coronary artery.
AbstractList SUMMARY Today, the majority of coronary stents are balloon‐expandable and are deployed using a balloon‐tipped catheter. To improve deliverability, the membrane of the angioplasty balloon is typically folded about the catheter in a pleated configuration. As such, the deployment of the angioplasty balloon is governed by the material properties of the balloon membrane, its folded configuration and its attachment to the catheter. Despite this observation, however, an optimum strategy for modelling the configuration of the angioplasty balloon in finite element studies of coronary stent deployment has not been identified, and idealised models of the angioplasty balloon are commonly employed in the literature. These idealised models often neglect complex geometrical features, such as the folded configuration of the balloon membrane and its attachment to the catheter, which may have a significant influence on the deployment of a stent. In this study, three increasingly sophisticated models of a typical semi‐compliant angioplasty balloon were employed to determine the influence of angioplasty balloon configuration on the deployment of a stent. The results of this study indicate that angioplasty balloon configuration has a significant influence on both the transient behaviour of the stent and its impact on the mechanical environment of the coronary artery. Copyright © 2013 John Wiley & Sons, Ltd.
SUMMARY Today, the majority of coronary stents are balloon-expandable and are deployed using a balloon-tipped catheter. To improve deliverability, the membrane of the angioplasty balloon is typically folded about the catheter in a pleated configuration. As such, the deployment of the angioplasty balloon is governed by the material properties of the balloon membrane, its folded configuration and its attachment to the catheter. Despite this observation, however, an optimum strategy for modelling the configuration of the angioplasty balloon in finite element studies of coronary stent deployment has not been identified, and idealised models of the angioplasty balloon are commonly employed in the literature. These idealised models often neglect complex geometrical features, such as the folded configuration of the balloon membrane and its attachment to the catheter, which may have a significant influence on the deployment of a stent. In this study, three increasingly sophisticated models of a typical semi-compliant angioplasty balloon were employed to determine the influence of angioplasty balloon configuration on the deployment of a stent. The results of this study indicate that angioplasty balloon configuration has a significant influence on both the transient behaviour of the stent and its impact on the mechanical environment of the coronary artery. Copyright © 2013 John Wiley & Sons, Ltd.
Today, the majority of coronary stents are balloon-expandable and are deployed using a balloon-tipped catheter. To improve deliverability, the membrane of the angioplasty balloon is typically folded about the catheter in a pleated configuration. As such, the deployment of the angioplasty balloon is governed by the material properties of the balloon membrane, its folded configuration and its attachment to the catheter. Despite this observation, however, an optimum strategy for modelling the configuration of the angioplasty balloon in finite element studies of coronary stent deployment has not been identified, and idealised models of the angioplasty balloon are commonly employed in the literature. These idealised models often neglect complex geometrical features, such as the folded configuration of the balloon membrane and its attachment to the catheter, which may have a significant influence on the deployment of a stent. In this study, three increasingly sophisticated models of a typical semi-compliant angioplasty balloon were employed to determine the influence of angioplasty balloon configuration on the deployment of a stent. The results of this study indicate that angioplasty balloon configuration has a significant influence on both the transient behaviour of the stent and its impact on the mechanical environment of the coronary artery.
SUMMARYToday, the majority of coronary stents are balloon‐expandable and are deployed using a balloon‐tipped catheter. To improve deliverability, the membrane of the angioplasty balloon is typically folded about the catheter in a pleated configuration. As such, the deployment of the angioplasty balloon is governed by the material properties of the balloon membrane, its folded configuration and its attachment to the catheter. Despite this observation, however, an optimum strategy for modelling the configuration of the angioplasty balloon in finite element studies of coronary stent deployment has not been identified, and idealised models of the angioplasty balloon are commonly employed in the literature. These idealised models often neglect complex geometrical features, such as the folded configuration of the balloon membrane and its attachment to the catheter, which may have a significant influence on the deployment of a stent. In this study, three increasingly sophisticated models of a typical semi‐compliant angioplasty balloon were employed to determine the influence of angioplasty balloon configuration on the deployment of a stent. The results of this study indicate that angioplasty balloon configuration has a significant influence on both the transient behaviour of the stent and its impact on the mechanical environment of the coronary artery. Copyright © 2013 John Wiley & Sons, Ltd. To date, an optimum strategy for modelling the configuration of the angioplasty balloon in finite element studies of balloon‐expandable coronary stent deployment has not been identified. In this study, three increasingly sophisticated models of a typical semi‐compliant angioplasty balloon were employed to determine the influence of angioplasty balloon configuration on the deployment of a stent. The results of this study indicate that angioplasty balloon configuration has a significant influence on both the transient behaviour of the stent and its impact on the mechanical environment of the coronary artery.
Author Boyle, Fergal
Martin, David
Author_xml – sequence: 1
  givenname: David
  surname: Martin
  fullname: Martin, David
  email: Correspondence to: David Martin, Department of Mechanical Engineering, Dublin Institute of Technology, Ireland., david.martin@dit.ie
  organization: Department of Mechanical Engineering, Dublin Institute of Technology, Ireland
– sequence: 2
  givenname: Fergal
  surname: Boyle
  fullname: Boyle, Fergal
  organization: Department of Mechanical Engineering, Dublin Institute of Technology, Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23696255$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9L3jAchcNwTOeEfYJR2M1u6tIkTZrdjZfpBHV_cHgZkvYXiUuT2rRov_1SfH0Hg2FukovnPIFzXqO9EAMg9LbCxxXG5GMb-mNS1-IFOiCY4VJIJvZ2byr30VFKtzgfIqUU9BXaJ5RLnjMH6P7EBTdBAR56CFOhg_ZLcqmItjDa-xhDCQ-DDp02Hoo2jjHocSnStNIdDD4ua_BTcRasnyG0sEZ1uHFx8DpNy5MmZ4N1N_OoJxfDG_TSap_gaHsfol8nX642X8vzb6dnm8_nZcsaIcrGaNEIKloGBpisNZPADKdCaiqaSjaa1TWurO2sFUSDltgYzrlllpi26-gh-vDoHcZ4N0OaVO9SC97rAHFOqhICU0or0TyP1pjWjDSEPY8ySXjWyiqj7_9Bb-M85pbXvzEnQhLG_wrbMaY0glXD6PpctKqwWldWeWW1rpzRd1vhbHroduDTphkoH4F752H5r0htLi-2wi3v8qgPO16PvxXP1dfq-vJUVVfs4vuP659qQ_8AfcLCdQ
CitedBy_id crossref_primary_10_1007_s13239_018_0350_5
crossref_primary_10_1142_S0219519420500220
crossref_primary_10_1038_s41598_023_43160_4
crossref_primary_10_1111_aor_13661
crossref_primary_10_1007_s10237_023_01749_8
crossref_primary_10_1371_journal_pone_0252788
crossref_primary_10_3389_fphys_2018_00513
crossref_primary_10_1016_j_biotri_2020_100122
crossref_primary_10_1098_rspa_2014_0282
crossref_primary_10_3390_cryst13111592
crossref_primary_10_1016_j_medengphy_2014_05_011
crossref_primary_10_1142_S0219519423500197
crossref_primary_10_1186_s40759_014_0002_x
crossref_primary_10_1080_10255842_2020_1763967
crossref_primary_10_1098_rspa_2015_0016
crossref_primary_10_1080_10255842_2020_1822823
crossref_primary_10_1016_j_jmbbm_2021_104644
crossref_primary_10_3390_jfb13030152
crossref_primary_10_1007_s10439_023_03165_6
crossref_primary_10_4244_EIJV10I11A226
crossref_primary_10_1007_s13239_022_00653_z
crossref_primary_10_1007_s10439_014_1237_8
crossref_primary_10_1016_j_jmbbm_2021_104609
crossref_primary_10_1371_journal_pone_0184782
crossref_primary_10_1007_s10439_023_03359_y
crossref_primary_10_1115_1_4036299
crossref_primary_10_1177_1045389X15592483
crossref_primary_10_3390_jfb14110547
crossref_primary_10_1002_cnm_3125
crossref_primary_10_1186_s12938_019_0661_2
crossref_primary_10_3389_fcvm_2022_883179
crossref_primary_10_1088_2057_1976_ac82f6
crossref_primary_10_1155_2018_2648910
crossref_primary_10_1186_s12938_023_01155_2
crossref_primary_10_1371_journal_pone_0149838
crossref_primary_10_1115_1_4045285
crossref_primary_10_1007_s13239_015_0219_9
crossref_primary_10_1007_s13239_021_00573_4
crossref_primary_10_1002_wsbm_1309
crossref_primary_10_1016_j_jfluidstructs_2017_01_018
crossref_primary_10_1002_pat_5840
crossref_primary_10_1002_cnm_3173
crossref_primary_10_1007_s13239_022_00626_2
crossref_primary_10_1016_j_ijcard_2019_11_091
Cites_doi 10.1016/j.medengphy.2008.11.005
10.1016/S0924-0136(01)01127-X
10.1016/j.jmatprotec.2004.04.396
10.1080/10255840108908007
10.1016/j.medengphy.2008.11.002
10.1016/S0167-5273(00)00472-1
10.1007/11790273_1
10.1186/1475-925X-8-8
10.1161/01.CIR.103.13.1740
10.1016/0735-1097(92)90476-4
10.1016/S0021-9290(02)00033-7
10.1016/j.ijcard.2004.12.033
10.1016/j.jbiomech.2008.01.027
10.1016/j.medengphy.2008.11.013
10.1016/j.biomaterials.2011.07.059
10.1016/j.commatsci.2004.05.001
10.1056/NEJM199408253310801
10.1007/s13239-010-0028-0
10.1056/NEJM199408253310802
10.1016/j.medengphy.2010.10.009
10.1080/10255841003766845
10.1056/NEJMoa012843
10.1016/j.jbiomech.2004.11.003
10.1243/09544119JEIM695
10.1016/j.jbiomech.2003.09.002
10.1056/NEJMoa032441
10.1097/00041433-199912000-00004
10.1136/jcp.2005.025742
10.1016/j.cma.2008.07.019
10.1016/j.jbiomech.2004.07.022
10.1161/01.CIR.99.1.44
10.1016/0021-9290(94)90209-7
10.1016/j.mseb.2011.03.013
10.3233/BIR-2010-0568
10.1161/CIR.0b013e3182009701
10.1152/japplphysiol.01329.2003
10.1152/ajpheart.00934.2004
10.1016/j.jbiomech.2007.12.005
10.1016/j.jbiomech.2010.01.033
10.1016/j.jbiomech.2010.03.050
10.1016/j.actbio.2011.05.032
10.1002/(SICI)1521-4052(199912)30:12<876::AID-MAWE876>3.0.CO;2-O
10.1056/NEJMoa035071
10.1114/1.1588654
10.1016/j.jmatprotec.2007.06.010
10.1016/S0021-9290(00)00098-1
10.1016/j.jmbbm.2010.11.003
10.1007/s10439-008-9606-9
10.1016/j.jbiomech.2009.10.046
10.1016/S0735-1097(02)02123-X
10.1016/j.jbiomech.2007.08.014
10.1016/j.medengphy.2004.08.012
10.1152/japplphysiol.00872.2004
10.1007/s10439-009-9836-5
10.1016/S0021-9290(01)00026-4
10.1016/S0924-0136(03)00435-7
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/cnm.2557
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Civil Engineering Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef
Civil Engineering Abstracts
Civil Engineering Abstracts
MEDLINE - Academic
MEDLINE
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2040-7947
EndPage 1175
ExternalDocumentID 3786405761
10_1002_cnm_2557
23696255
CNM2557
ark_67375_WNG_1T4MPQWR_C
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
4.4
50Z
51W
51X
52N
52O
52P
52S
52T
52U
52W
52X
53G
66C
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABCVL
ABDBF
ABHUG
ABJNI
ABPTK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AITYG
HGLYW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c4877-8ba78737c4ebe495a49e4b6379a378198a45501ffdff72aea90bb666f4f2bcdd3
IEDL.DBID DR2
ISSN 2040-7939
IngestDate Fri Aug 16 04:38:56 EDT 2024
Fri Aug 16 08:55:14 EDT 2024
Sat Aug 17 02:21:37 EDT 2024
Sat Aug 31 00:10:07 EDT 2024
Fri Aug 23 01:47:52 EDT 2024
Sat Sep 28 08:08:44 EDT 2024
Sat Aug 24 00:56:23 EDT 2024
Wed Jan 17 05:01:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords stent
coronary artery
angioplasty balloon
restenosis
coronary heart disease
finite element analysis
Language English
License Copyright © 2013 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4877-8ba78737c4ebe495a49e4b6379a378198a45501ffdff72aea90bb666f4f2bcdd3
Notes ark:/67375/WNG-1T4MPQWR-C
ArticleID:CNM2557
istex:FBC937B629F5E94D9EDA920FF27482909FE16512
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1037&context=engschmecart
PMID 23696255
PQID 1706279246
PQPubID 2034586
PageCount 15
ParticipantIDs proquest_miscellaneous_1770333178
proquest_miscellaneous_1503542824
proquest_miscellaneous_1492633391
proquest_journals_1706279246
crossref_primary_10_1002_cnm_2557
pubmed_primary_23696255
wiley_primary_10_1002_cnm_2557_CNM2557
istex_primary_ark_67375_WNG_1T4MPQWR_C
PublicationCentury 2000
PublicationDate 2013-11
November 2013
2013-Nov
2013-11-00
20131101
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chichester
PublicationTitle International journal for numerical methods in biomedical engineering
PublicationTitleAlternate Int. J. Numer. Meth. Biomed. Engng
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References David Chua S, Mac Donald B, Hashmi M.Finite element simulation of stent and balloon interaction. Journal of Materials Processing Technology 2003; 143-144:591-597.
Pena E, Alastrue V, Laborda A, Martinez M, Doblare M.A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour. Journal of Biomechanics 2010; 43:984-989.
Serruys P, Rensing B.Handbook of Coronary Stents. Dunitz Ltd.: London, 2005.
Murphy J, Boyle F.A numerical methodology to fully elucidate the altered wall shear stress in a stented coronary artery. Cardiovascular Engineering and Technology 2010; 1:256-268.
Liang D, Yang D, Qi M, Wang W.Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. International Journal of Cardiology 2005; 104:314-318.
Pericevic I, Lally C, Toner D, Kelly D.The influence of plaque composition on underlying arterial wall stress during stent expansion: The case for lesion-specific stents. Medical Engineering and Physics 2009; 31:428-433.
Holzapfel G, Sommer G, Gasser C, Regitnig P.Determination of layer- specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. American Journal of Physiology-Heart and Circulatory Physiology 2005; 289:H2048-H2058.
Pant S, Limbert G, Curzen NP, Bressloff NW.Multiobjective design optimisation of coronary stents. Biomaterials 2011; 32:7755-7773.
Serruys P, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, Belardi J, Sigwart U, Colombo A, Goy J, van den Heuvel P, Delcan J, Morel M.A comparison of balloon- expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. New England Journal of Medicine 1994; 331:489-495.
Wentzel J, Krams R, Schuurbiers J, Oomen J, Kloet J, van der Giessen W, Serruys P, Slager C.Relationship between neointimal thickness and shear stress after wallstent implantation in human coronary arteries. Circulation 2001; 103:1740-1745.
Mortier P, De Beule M, Van Loo D, Verhegghe B, Verdonck P.Finite element analysis of side branch access during bifurcation stenting. Medical Engineering and Physics 2009; 31:434-440.
Lally C, Dolan F, Prendergast P.Cardiovascular stent design and vessel stresses: A finite element analysis. Journal of Biomechanics 2005; 38:1574-1581.
Hehrlein C, Zimmermann M, Metz J, Ensinger W, Kubler W.Influence of surface texture and charge on the biocompatibility of endovascular stents. Coronary Artery Disease 1995; 6:581-586.
Colombo A, Stankovic G, Moses J.Selection of coronary stents. Journal of the American College of Cardiology 2002; 40:1021-1033.
Farb A, Sangiorgi G, Carter A, Walley V, Edwards W, Schwartz R, Virmani R.Pathology of acute and chronic coronary stenting in humans. Circulation 1999; 99:44-52.
LaDisa J, Olson L, Guler I, Hettrick D, Audi S, Kersten J, Warltier D, Pagel P.Stent design properties and deployment ratio influence indexes of wall shear stress: A three-dimensional computational fluid dynamics investigation within a normal artery. Journal of Applied Physiology 2004; 97:424-430.
Mejia J, Ruzzeh B, Mongrain R, Leask R, Bertrand O.Evaluation of the effect of stent strut profile on shear stress distribution using statistical moments. Biomedical Engineering Online 2009; 8:8-8.
Gastaldi D, Sassi V, Petrini L, Vedani M, Trasatti S, Migliavacca F.Continuum damage model for bioresorbable magnesium alloy devices: Application to coronary stents. Journal of the Mechanical Behavior of Biomedical Materials 2011; 4:352-365.
Wu W, Gastaldi D, Yang K, Tan L, Petrini L, Migliavacca F.Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Materials Science and Engineering: B 2011; 176:1733-1740.
Petrini L, Migliavacca F, Auricchio F, Dubini G.Numerical investigation of the intravascular coronary stent flexibility. Journal of Biomechanics 2004; 37:495-501.
Fischman D, Leon M, Baim D, Schatz R, Savage M, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M, Cleman M, Heuser R, Almond D, Teirstein P, Fish R, Colombo A, Brinker J, Moses J, Shaknovich A, Hirshfeld J, Bailey S, Ellis S, Rake R, Goldberg S.A randomized comparison of coronary stent placement and balloon angioplasty in the treatment of coronary artery disease. New England Journal of Medicine 1994; 331:496-501.
Stone G, Ellis S, Cox D, Hermiller J, O'Shaughnessy C, Mann J, Turco M, Caputo R, Bergin P, Greenberg J, Popma J, Russell M.A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. New England Journal of Medicine 2004; 350:221-231.
Grogan J, O'Brien B, Leen S, McHugh P.A corrosion model for bioabsorbable metallic stents. Acta Biomaterialia 2011; 7:3523-3533.
Mitra A, Agrawal D.In stent restenosis: bane of the stent era. Journal of Clinical Pathology 2006; 59:232-239.
Wang W, Liang D, Yang D, Qi M.Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. Journal of Biomechanics 2006; 39:21-32.
Martin D, Boyle F.Drug-eluting stents for coronary artery disease: A review. Medical Engineering and Physics 2011; 33:148-163.
Balossino R, Gervaso F, Migliavacca F, Dubini G.Effects of different stent designs on local hemodynamics in stented arteries. Journal of Biomechanics 2008; 41:1053-1061.
Capelli C, Gervaso F, Petrini L, Dubini G, Migliavacca F.Assessment of tissue prolapse after balloon-expandable stenting: Influence of stent cell geometry. Medical Engineering and Physics 2009; 31:441-447.
Gervaso F, Capelli C, Petrini L, Lattanzio S, Di Virgilio L, Migliavacca F.On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. Journal of Biomechanics 2008; 41:1206-1212.
De Beule M, Mortier P, Carlier S, Verhegghe B, Van Impe R, Verdonck P.Realistic finite element-based stent design: The impact of balloon folding. Journal of Biomechanics 2008; 41:383-389.
Mortier P, Holzapfel G, De Beule M, Van Loo D, Taeymans Y, Segers P, Verdonck P, Verhegghe B.A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: Comparison of three drug-eluting stents. Annals of Biomedical Engineering 2010; 38:88-99.
Morice M, Serruys P, Sousa J, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico R.A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. New England Journal of Medicine 2002; 346:1773-1780.
Migliavacca F, Petrini L, Montanari V, Quagliana I, Auricchio F, Dubini G.A predictive study of the mechanical behaviour of coronary stents by computer modelling. Medical Engineering and Physics 2005; 27:13-18.
Martin D, Boyle FJ.Computational structural modelling of coronary stent deployment: A review. Computer Methods in Biomechanics and Biomedical Engineering 2011; 14:331-348.
LaDisa J, Olson L, Guler I, Hettrick D, Kersten J, Warltier D, Pagel P.Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. Journal of Applied Physiology 2005; 98:947-957.
David Chua S, Mac Donald B, Hashmi M.Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion. Journal of Materials Processing Technology 2004; 155-156:1772-1779.
Virmani R, Farb A.Pathology of in-stent restenosis. Current Opinion in Lipidology 1999; 10:499-506.
Migliavacca F, Petrini L, Colombo M, Auricchio F, Pietrabissa R.Mechanical behavior of coronary stents investigated through the finite element method. Journal of Biomechanics 2002; 35:803-811.
Zunino P, D'Angelo C, Petrini L, Vergara C, Capelli C, Migliavacca F.Numerical simulation of drug eluting coronary stents: Mechanics, fluid dynamics and drug release. Computer Methods in Applied Mechanics and Engineering 2009; 198:3633-3644.
Early M, Kelly D.The role of vessel geometry and material properties on the mechanics of stenting in the coronary and peripheral arteries. Proceedings of the Institution of Mechanical Engineers, Part H 2010; 224:465-476.
LaDisa J, Guler I, Olson L, Hettrick D, Kersten J, Warltier D, Pagel P.Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Annals of Biomedical Engineering 2003; 31:972-980.
Brauer H, Stolpmann J, Hallmann H, Erbel R, Fischer A.Measurement and numerical simulation of the dilatation behaviour of coronary stents. Materialwissenschaft und Werkstofftechnik 2000; 30:876-885.
Roger V, Go A, Lloyd-Jones D, Adams R, Berry J, Brown T, Carnethon M, Dai S, de Simone G, Ford E, Fox C, Fullerton H, Gillespie C, Greenlund K, Hailpern S, Heit J, Ho P, Howard V, Kissela B, Kittner S, Lackland D, Lichtman J, Lisabeth L, Makuc D, Marcus G, Marelli A, Matchar D, McDermott M, Meigs J, Moy C, Mozaffarian D, Mussolino M, Nichol G, Paynter N, Rosamond W, Sorlie P, Stafford R, Turan T, Turner M, Wong N, Wylie-Rosett J.Heart disease and stroke statistics 2011 update: A Report from the American Heart Association. Circulation 2011; 123:e18-e209.
Murphy J, Boyle F.A full-range, multi-variable, CFD-based methodology to identify abnormal near-wall hemodynamics in a stented coronary artery. Biorheology 2010; 47:117-132.
Vairo G, Cioffi M, Cottone R, Dubini G, Migliavacca F.Drug release from coronary eluting stents: A multidomain approach. Journal of Biomechanics 2010; 43:1580-1589.
Schwartz R, Huber K, Murphy J, Edwards W, Camrud A, Vlietstra R, Holmes D.Restenosis and the proportional neointimal response to coronary artery injury: Results in a porcine model. Journal of the American College of Cardiology 1992; 19:267-274.
Zahedmanesh H, John Kelly D, Lally C.Simulation of a balloon expandable stent in a realistic coronary artery: Determination of the optimum modelling strategy. Journal of Biomechanics 2011; 43:2126-2132.
Dumoulin C, Cochelin B.Mechanic
1994; 331
2010; 224
2006; 39
2009; 198
1992; 19
1994; 27
2011; 14
2005; 27
2001; 103
2004; 31
2010; 1
2002; 40
2005; 104
2004; 37
2002; 346
1999; 99
1999; 10
2005; 38
2008; 197
2011; 123
2010; 38
2002; 35
2006; 59
2011; 33
2011; 32
2006
2005
2004
2011; 4
1995; 6
2003; 31
2011; 7
2011; 176
2010; 43
2004; 97
2003; 349
2010; 47
2009; 31
2002; 120
2004; 155–156
2001; 4
2005; 289
2004; 350
2003; 143–144
2000; 33
2000; 30
2005; 98
2009; 8
2011; 43
2008; 41
2001; 34
2001; 78
2009; 37
e_1_2_6_51_1
Murphy J (e_1_2_6_24_1) 2010; 47
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Hehrlein C (e_1_2_6_13_1) 1995; 6
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Serruys P (e_1_2_6_53_1) 2005
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 97
  start-page: 424
  year: 2004
  end-page: 430
  article-title: Stent design properties and deployment ratio influence indexes of wall shear stress: A three‐dimensional computational fluid dynamics investigation within a normal artery
  publication-title: Journal of Applied Physiology
– volume: 198
  start-page: 3633
  year: 2009
  end-page: 3644
  article-title: Numerical simulation of drug eluting coronary stents: Mechanics, fluid dynamics and drug release
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 31
  start-page: 434
  year: 2009
  end-page: 440
  article-title: Finite element analysis of side branch access during bifurcation stenting
  publication-title: Medical Engineering and Physics
– year: 2005
– volume: 32
  start-page: 7755
  year: 2011
  end-page: 7773
  article-title: Multiobjective design optimisation of coronary stents
  publication-title: Biomaterials
– volume: 41
  start-page: 1053
  year: 2008
  end-page: 1061
  article-title: Effects of different stent designs on local hemodynamics in stented arteries
  publication-title: Journal of Biomechanics
– volume: 19
  start-page: 267
  year: 1992
  end-page: 274
  article-title: Restenosis and the proportional neointimal response to coronary artery injury: Results in a porcine model
  publication-title: Journal of the American College of Cardiology
– start-page: 1
  year: 2006
  end-page: 8
– volume: 31
  start-page: 428
  year: 2009
  end-page: 433
  article-title: The influence of plaque composition on underlying arterial wall stress during stent expansion: The case for lesion‐specific stents
  publication-title: Medical Engineering and Physics
– volume: 331
  start-page: 489
  year: 1994
  end-page: 495
  article-title: A comparison of balloon‐ expandable‐stent implantation with balloon angioplasty in patients with coronary artery disease
  publication-title: New England Journal of Medicine
– volume: 31
  start-page: 421
  year: 2004
  end-page: 438
  article-title: Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling
  publication-title: Computational Materials Science
– volume: 8
  start-page: 8
  year: 2009
  end-page: 8
  article-title: Evaluation of the effect of stent strut profile on shear stress distribution using statistical moments
  publication-title: Biomedical Engineering Online
– volume: 7
  start-page: 3523
  year: 2011
  end-page: 3533
  article-title: A corrosion model for bioabsorbable metallic stents
  publication-title: Acta Biomaterialia
– volume: 35
  start-page: 803
  year: 2002
  end-page: 811
  article-title: Mechanical behavior of coronary stents investigated through the finite element method
  publication-title: Journal of Biomechanics
– volume: 38
  start-page: 1574
  year: 2005
  end-page: 1581
  article-title: Cardiovascular stent design and vessel stresses: A finite element analysis
  publication-title: Journal of Biomechanics
– volume: 289
  start-page: H2048
  year: 2005
  end-page: H2058
  article-title: Determination of layer‐ specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling
  publication-title: American Journal of Physiology‐Heart and Circulatory Physiology
– volume: 33
  start-page: 1461
  year: 2000
  end-page: 1470
  article-title: Mechanical behaviour modelling of balloon‐ expandable stents
  publication-title: Journal of Biomechanics
– volume: 43
  start-page: 1580
  year: 2010
  end-page: 1589
  article-title: Drug release from coronary eluting stents: A multidomain approach
  publication-title: Journal of Biomechanics
– volume: 14
  start-page: 331
  year: 2011
  end-page: 348
  article-title: Computational structural modelling of coronary stent deployment: A review
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– start-page: 253
  year: 2004
– volume: 6
  start-page: 581
  year: 1995
  end-page: 586
  article-title: Influence of surface texture and charge on the biocompatibility of endovascular stents
  publication-title: Coronary Artery Disease
– volume: 4
  start-page: 352
  year: 2011
  end-page: 365
  article-title: Continuum damage model for bioresorbable magnesium alloy devices: Application to coronary stents
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
– volume: 176
  start-page: 1733
  year: 2011
  end-page: 1740
  article-title: Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels
  publication-title: Materials Science and Engineering: B
– volume: 41
  start-page: 383
  year: 2008
  end-page: 389
  article-title: Realistic finite element‐based stent design: The impact of balloon folding
  publication-title: Journal of Biomechanics
– volume: 40
  start-page: 1021
  year: 2002
  end-page: 1033
  article-title: Selection of coronary stents
  publication-title: Journal of the American College of Cardiology
– volume: 99
  start-page: 44
  year: 1999
  end-page: 52
  article-title: Pathology of acute and chronic coronary stenting in humans
  publication-title: Circulation
– volume: 30
  start-page: 876
  year: 2000
  end-page: 885
  article-title: Measurement and numerical simulation of the dilatation behaviour of coronary stents
  publication-title: Materialwissenschaft und Werkstofftechnik
– volume: 10
  start-page: 499
  year: 1999
  end-page: 506
  article-title: Pathology of in‐stent restenosis
  publication-title: Current Opinion in Lipidology
– volume: 33
  start-page: 148
  year: 2011
  end-page: 163
  article-title: Drug‐eluting stents for coronary artery disease: A review
  publication-title: Medical Engineering and Physics
– volume: 98
  start-page: 947
  year: 2005
  end-page: 957
  article-title: Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time‐dependent 3D computational fluid dynamics models
  publication-title: Journal of Applied Physiology
– volume: 47
  start-page: 117
  year: 2010
  end-page: 132
  article-title: A full‐range, multi‐variable, CFD‐based methodology to identify abnormal near‐wall hemodynamics in a stented coronary artery
  publication-title: Biorheology
– volume: 1
  start-page: 256
  year: 2010
  end-page: 268
  article-title: A numerical methodology to fully elucidate the altered wall shear stress in a stented coronary artery
  publication-title: Cardiovascular Engineering and Technology
– volume: 37
  start-page: 495
  year: 2004
  end-page: 501
  article-title: Numerical investigation of the intravascular coronary stent flexibility
  publication-title: Journal of Biomechanics
– volume: 38
  start-page: 88
  year: 2010
  end-page: 99
  article-title: A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: Comparison of three drug‐eluting stents
  publication-title: Annals of Biomedical Engineering
– volume: 43
  start-page: 2126
  year: 2011
  end-page: 2132
  article-title: Simulation of a balloon expandable stent in a realistic coronary artery: Determination of the optimum modelling strategy
  publication-title: Journal of Biomechanics
– volume: 59
  start-page: 232
  year: 2006
  end-page: 239
  article-title: In stent restenosis: bane of the stent era
  publication-title: Journal of Clinical Pathology
– volume: 31
  start-page: 972
  year: 2003
  end-page: 980
  article-title: Three‐dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation
  publication-title: Annals of Biomedical Engineering
– volume: 349
  start-page: 1315
  year: 2003
  end-page: 1323
  article-title: Sirolimus‐ eluting stents versus standard stents in patients with stenosis in a native coronary artery
  publication-title: New England Journal of Medicine
– volume: 143–144
  start-page: 591
  year: 2003
  end-page: 597
  article-title: Finite element simulation of stent and balloon interaction
  publication-title: Journal of Materials Processing Technology
– volume: 104
  start-page: 314
  year: 2005
  end-page: 318
  article-title: Finite element analysis of the implantation of a balloon‐expandable stent in a stenosed artery
  publication-title: International Journal of Cardiology
– volume: 224
  start-page: 465
  year: 2010
  end-page: 476
  article-title: The role of vessel geometry and material properties on the mechanics of stenting in the coronary and peripheral arteries
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part H
– volume: 78
  start-page: 51
  year: 2001
  end-page: 67
  article-title: A method for investigating the mechanical properties of intracoronary stents using finite element numerical simulation
  publication-title: International Journal of Cardiology
– volume: 41
  start-page: 1206
  year: 2008
  end-page: 1212
  article-title: On the effects of different strategies in modelling balloon‐expandable stenting by means of finite element method
  publication-title: Journal of Biomechanics
– volume: 350
  start-page: 221
  year: 2004
  end-page: 231
  article-title: A polymer‐based, paclitaxel‐eluting stent in patients with coronary artery disease
  publication-title: New England Journal of Medicine
– volume: 155–156
  start-page: 1772
  year: 2004
  end-page: 1779
  article-title: Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion
  publication-title: Journal of Materials Processing Technology
– volume: 39
  start-page: 21
  year: 2006
  end-page: 32
  article-title: Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method
  publication-title: Journal of Biomechanics
– volume: 43
  start-page: 984
  year: 2010
  end-page: 989
  article-title: A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour
  publication-title: Journal of Biomechanics
– volume: 103
  start-page: 1740
  year: 2001
  end-page: 1745
  article-title: Relationship between neointimal thickness and shear stress after wallstent implantation in human coronary arteries
  publication-title: Circulation
– volume: 4
  start-page: 249
  year: 2001
  end-page: 263
  article-title: Finite‐element analysis of a stenotic artery revascularization through a stent insertion
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 31
  start-page: 441
  year: 2009
  end-page: 447
  article-title: Assessment of tissue prolapse after balloon‐expandable stenting: Influence of stent cell geometry
  publication-title: Medical Engineering and Physics
– volume: 331
  start-page: 496
  year: 1994
  end-page: 501
  article-title: A randomized comparison of coronary stent placement and balloon angioplasty in the treatment of coronary artery disease
  publication-title: New England Journal of Medicine
– volume: 27
  start-page: 195
  year: 1994
  end-page: 204
  article-title: Static circumferential tangential modulus of human atherosclerotic tissue
  publication-title: Journal of Biomechanics
– volume: 346
  start-page: 1773
  year: 2002
  end-page: 1780
  article-title: A randomized comparison of a sirolimus‐eluting stent with a standard stent for coronary revascularization
  publication-title: New England Journal of Medicine
– volume: 34
  start-page: 1065
  year: 2001
  end-page: 1075
  article-title: Mechanical properties of coronary stents determined by using finite element analysis
  publication-title: Journal of Biomechanics
– volume: 27
  start-page: 13
  year: 2005
  end-page: 18
  article-title: A predictive study of the mechanical behaviour of coronary stents by computer modelling
  publication-title: Medical Engineering and Physics
– volume: 37
  start-page: 315
  year: 2009
  end-page: 30
  article-title: Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter‐stent systems
  publication-title: Annals of Biomedical Engineering
– volume: 197
  start-page: 174
  year: 2008
  end-page: 181
  article-title: Analysis of wall shear stress in stented coronary artery using 3D computational fluid dynamics modeling
  publication-title: Journal of Materials Processing Technology
– volume: 120
  start-page: 335
  year: 2002
  end-page: 340
  article-title: Finite‐element simulation of stent expansion
  publication-title: Journal of Materials Processing Technology
– volume: 123
  start-page: e18
  year: 2011
  end-page: e209
  article-title: Heart disease and stroke statistics 2011 update: A Report from the American Heart Association
  publication-title: Circulation
– ident: e_1_2_6_47_1
  doi: 10.1016/j.medengphy.2008.11.005
– ident: e_1_2_6_30_1
  doi: 10.1016/S0924-0136(01)01127-X
– ident: e_1_2_6_32_1
  doi: 10.1016/j.jmatprotec.2004.04.396
– ident: e_1_2_6_28_1
  doi: 10.1080/10255840108908007
– ident: e_1_2_6_29_1
  doi: 10.1016/j.medengphy.2008.11.002
– ident: e_1_2_6_49_1
  doi: 10.1016/S0167-5273(00)00472-1
– ident: e_1_2_6_55_1
  doi: 10.1007/11790273_1
– ident: e_1_2_6_22_1
  doi: 10.1186/1475-925X-8-8
– ident: e_1_2_6_12_1
  doi: 10.1161/01.CIR.103.13.1740
– ident: e_1_2_6_11_1
  doi: 10.1016/0735-1097(92)90476-4
– ident: e_1_2_6_42_1
  doi: 10.1016/S0021-9290(02)00033-7
– ident: e_1_2_6_40_1
  doi: 10.1016/j.ijcard.2004.12.033
– ident: e_1_2_6_37_1
  doi: 10.1016/j.jbiomech.2008.01.027
– ident: e_1_2_6_44_1
  doi: 10.1016/j.medengphy.2008.11.013
– ident: e_1_2_6_46_1
  doi: 10.1016/j.biomaterials.2011.07.059
– ident: e_1_2_6_41_1
  doi: 10.1016/j.commatsci.2004.05.001
– ident: e_1_2_6_6_1
  doi: 10.1056/NEJM199408253310801
– ident: e_1_2_6_23_1
  doi: 10.1007/s13239-010-0028-0
– ident: e_1_2_6_3_1
  doi: 10.1056/NEJM199408253310802
– ident: e_1_2_6_14_1
  doi: 10.1016/j.medengphy.2010.10.009
– ident: e_1_2_6_52_1
  doi: 10.1080/10255841003766845
– ident: e_1_2_6_4_1
  doi: 10.1056/NEJMoa012843
– ident: e_1_2_6_50_1
  doi: 10.1016/j.jbiomech.2004.11.003
– ident: e_1_2_6_35_1
  doi: 10.1243/09544119JEIM695
– ident: e_1_2_6_48_1
  doi: 10.1016/j.jbiomech.2003.09.002
– ident: e_1_2_6_7_1
  doi: 10.1056/NEJMoa032441
– ident: e_1_2_6_10_1
  doi: 10.1097/00041433-199912000-00004
– ident: e_1_2_6_8_1
  doi: 10.1136/jcp.2005.025742
– ident: e_1_2_6_27_1
  doi: 10.1016/j.cma.2008.07.019
– ident: e_1_2_6_39_1
  doi: 10.1016/j.jbiomech.2004.07.022
– ident: e_1_2_6_9_1
  doi: 10.1161/01.CIR.99.1.44
– ident: e_1_2_6_58_1
  doi: 10.1016/0021-9290(94)90209-7
– ident: e_1_2_6_26_1
  doi: 10.1016/j.mseb.2011.03.013
– volume: 47
  start-page: 117
  year: 2010
  ident: e_1_2_6_24_1
  article-title: A full‐range, multi‐variable, CFD‐based methodology to identify abnormal near‐wall hemodynamics in a stented coronary artery
  publication-title: Biorheology
  doi: 10.3233/BIR-2010-0568
  contributor:
    fullname: Murphy J
– ident: e_1_2_6_2_1
  doi: 10.1161/CIR.0b013e3182009701
– ident: e_1_2_6_20_1
  doi: 10.1152/japplphysiol.01329.2003
– ident: e_1_2_6_56_1
  doi: 10.1152/ajpheart.00934.2004
– ident: e_1_2_6_15_1
  doi: 10.1016/j.jbiomech.2007.12.005
– ident: e_1_2_6_25_1
  doi: 10.1016/j.jbiomech.2010.01.033
– ident: e_1_2_6_51_1
  doi: 10.1016/j.jbiomech.2010.03.050
– ident: e_1_2_6_18_1
  doi: 10.1016/j.actbio.2011.05.032
– ident: e_1_2_6_54_1
  doi: 10.1002/(SICI)1521-4052(199912)30:12<876::AID-MAWE876>3.0.CO;2-O
– ident: e_1_2_6_5_1
  doi: 10.1056/NEJMoa035071
– ident: e_1_2_6_19_1
  doi: 10.1114/1.1588654
– ident: e_1_2_6_16_1
  doi: 10.1016/j.jmatprotec.2007.06.010
– ident: e_1_2_6_34_1
  doi: 10.1016/S0021-9290(00)00098-1
– ident: e_1_2_6_17_1
  doi: 10.1016/j.jmbbm.2010.11.003
– ident: e_1_2_6_38_1
  doi: 10.1007/s10439-008-9606-9
– ident: e_1_2_6_60_1
  doi: 10.1016/j.jbiomech.2009.10.046
– ident: e_1_2_6_59_1
  doi: 10.1016/S0735-1097(02)02123-X
– ident: e_1_2_6_33_1
  doi: 10.1016/j.jbiomech.2007.08.014
– volume-title: Handbook of Coronary Stents
  year: 2005
  ident: e_1_2_6_53_1
  contributor:
    fullname: Serruys P
– ident: e_1_2_6_43_1
  doi: 10.1016/j.medengphy.2004.08.012
– ident: e_1_2_6_21_1
  doi: 10.1152/japplphysiol.00872.2004
– ident: e_1_2_6_45_1
  doi: 10.1007/s10439-009-9836-5
– ident: e_1_2_6_36_1
  doi: 10.1016/S0021-9290(01)00026-4
– ident: e_1_2_6_31_1
  doi: 10.1016/S0924-0136(03)00435-7
– ident: e_1_2_6_57_1
– volume: 6
  start-page: 581
  year: 1995
  ident: e_1_2_6_13_1
  article-title: Influence of surface texture and charge on the biocompatibility of endovascular stents
  publication-title: Coronary Artery Disease
  contributor:
    fullname: Hehrlein C
SSID ssj0000299973
Score 2.2929418
Snippet SUMMARYToday, the majority of coronary stents are balloon‐expandable and are deployed using a balloon‐tipped catheter. To improve deliverability, the membrane...
Today, the majority of coronary stents are balloon-expandable and are deployed using a balloon-tipped catheter. To improve deliverability, the membrane of the...
SUMMARY Today, the majority of coronary stents are balloon‐expandable and are deployed using a balloon‐tipped catheter. To improve deliverability, the membrane...
SUMMARY Today, the majority of coronary stents are balloon-expandable and are deployed using a balloon-tipped catheter. To improve deliverability, the membrane...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1161
SubjectTerms angioplasty balloon
Angioplasty, Balloon, Coronary - instrumentation
Angioplasty, Balloon, Coronary - methods
Attachment
Catheters
coronary artery
coronary heart disease
Coronary Vessels - physiology
Finite Element Analysis
Finite element method
Humans
Mathematical analysis
Medical equipment
Membranes
Models, Cardiovascular
Prosthesis Design
restenosis
stent
Stents
Strategy
Surgical implants
Title Finite element analysis of balloon-expandable coronary stent deployment: Influence of angioplasty balloon configuration
URI https://api.istex.fr/ark:/67375/WNG-1T4MPQWR-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.2557
https://www.ncbi.nlm.nih.gov/pubmed/23696255
https://www.proquest.com/docview/1706279246/abstract/
https://search.proquest.com/docview/1492633391
https://search.proquest.com/docview/1503542824
https://search.proquest.com/docview/1770333178
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZQuXChUF6BFhkJcds0a3uzMTcUkRakRFC1aiUO1vixVdSyGzWJ1HLiJ_Ab-SWd8T5QEVSIUw4ZJ37M2N_YM98w9tpSmTidhSRkHhLlvU_AOkiKFFIn3ND5mFs1nQ33j9THk-ykiaqkXJiaH6K7cCPLiPs1GTjY5e4v0lBXfu0jHqZEcuLRIzx0ILrrlQFuszq-L4sYM4cdaqlnB2K3bXvjMLpL83r5J6R5E7jGk2eyyb60fa4DTs7665Xtu2-_0Tn-36AesPsNIOXvag16yO6EcottNuCUN6a_fMSuJnOCpzzU8eYcGjYTXhXc0ut9Vf78_iNcLuhqwp4H7ogbAXvCcbwo7wOVFqamb_mHtjIKNYbydF4tEMSvrtofwrZlMT9d19r5mB1N3h-O95OmbkPi0P3BQ88CbgMydwo1BB0wUDooO5S5BpkjAhkBpVKnReGLIhcQQA-sRTeqUIWwznv5hG2UVRmeMe6UQwdJBchBKjxIwYN22Qgc-oF65HWPvWoX0Cxqeg5TEzELg3NpaC577E1c2U4ALs4onC3PzPFsz6SHavrp8_GBGffYdrv0prHkpSF6ISJZVEP8r-5rtEF6WIEyVGuUIdZFKaVOb5HJBjJDX0-oW2Ry3H8lIrpRjz2tVa_rtKDCizgcHE1UoL8O14xnU_p8_q-CL9g9QTU-YoLlNttYXazDDiKtlX0Zbeoa4FUovw
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6V9gAXyrMEChgJcds0a3uzWTihiJBCE0GVqj0gWX5tFRV2ozaRWk78BH4jv4QZ7wMVQYU47WHHux57xv7Gj28AnhtKE5clPvKJ05F0zkXaWB3lsY4tt33rwt2qybQ_PpDvjpKjNXjV3IWp-CHaBTfyjDBek4PTgvTOL9ZQW3zpIiBOr8EGensS4ql93i6w9HCgzcIOMw-n5rBKDflsj-80hS9NRxvUsud_wpqXoWuYe0ab8KmpdXXk5KS7Wpqu_foboeN_qnULbtaYlL2ujOg2rPniDmzW-JTV3n92Fy5Gc0KozFdHzpmuCU1YmTNDG_hl8ePbd3--oNUJ89kzS_QIWBWGCqO885RdmIq-ZLtNchQqrIvjeblAHL-8aD6EZYt8fryqDPQeHIzezIbjqE7dEFmMgHDeMxpHApFaiUaCMZiWmZemL9JMixRByEDTbeo4z12ep1x7nfWMwUgqlzk31jlxH9aLsvAPgFlpMUaSXqdaSJxLtdOZTQbaYiiYDVzWgWdND6pFxdChKi5mrrAtFbVlB16Erm0F9OkJnWhLE3U4favimZx8-Hi4r4Yd2G76XtXOfKaIYYh4FmUf_9W-RjekvRVd-HKFMkS8KITI4itkkp5IMNzj8gqZFIdggaBu0IGtyvbaSnPKvYjqoDbBgv6qrhpOJ_R8-K-CT-H6eDbZU3u70_eP4AanlB_hvuU2rC9PV_4xAq-leRIc7CdYySzh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaglRAXyrMEChgJcds0a3t3s9xQSmiBRKVq1UocrPGrigq7UZtILSd-Ar-RX8LMvlARVIhTDhknHnvG_sYef8PYC0Nl4vLERz5xECnnXATGQhRiiK2wqXXV26rJNN0-UO-OkqMmq5LewtT8EN2BG3lGtV6Tg89d2PxFGmqLL33Ew9l1tqpSKciit_ZEd74ywHU2ry6YRZU0hz1quWcHYrNtfGk3WqWBPf8T1LyMXKutZ7zGPrWdrjNOTvrLhenbr7_xOf6fVrfZrQaR8te1Cd1h13xxl6016JQ3vn92j12MZ4RPua8Tzjk0dCa8DNzQ9X1Z_Pj23Z_P6WzCfPbcEjkC9oSjvijvPNUWpqav-E5bGoUaQ3E8K-eI4hcX7Q9h2yLMjpe1ed5nB-M3-6PtqCncEFmMf3DXM4DrgMysQhPBCAxU7pVJZZaDzBCCDIHeUschuBAyAR7ygTEYRwUVhLHOyQdspSgL_5BxqyxGSMpDBlLhTgoOcpsMwWIgmA9d3mPP2wnU85qfQ9dMzELjWGoayx57Wc1sJwCnJ5TPliX6cPpWx_tqsvvxcE-PemyjnXrduPKZJn4hYllUKf5X9zU6Id2sQOHLJcoQ7aKUMo-vkEkGMsFgT6grZDJcgCVCumGPrdem13VaUOVFVAe1qQzor-rq0XRCn4_-VfAZu7G7NdYfdqbvH7Obgup9VI8tN9jK4nTpnyDqWpinlXv9BL2eK5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+analysis+of+balloon-expandable+coronary+stent+deployment%3A+Influence+of+angioplasty+balloon+configuration&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Martin%2C+David&rft.au=Boyle%2C+Fergal&rft.date=2013-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2040-7939&rft.eissn=2040-7947&rft.volume=29&rft.issue=11&rft.spage=1161&rft.epage=1175&rft_id=info:doi/10.1002%2Fcnm.2557&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_1T4MPQWR_C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon