Tissue-Specific Liver X Receptor Activation Promotes Macrophage Reverse Cholesterol Transport In Vivo

OBJECTIVE—We previously reported that a systemic liver X receptor (LXR) agonist promoted macrophage reverse-cholesterol transport (mRCT) in vivo. Because LXR are expressed in multiple tissues involved in RCT (macrophages, liver, intestine), we analyzed the effect of tissue-specific LXR agonism on mR...

Full description

Saved in:
Bibliographic Details
Published inArteriosclerosis, thrombosis, and vascular biology Vol. 30; no. 4; pp. 781 - 786
Main Authors Yasuda, Tomoyuki, Grillot, Didier, Billheimer, Jeffery T, Briand, François, Delerive, Philippe, Huet, Stephane, Rader, Daniel J
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Heart Association, Inc 01.04.2010
Lippincott Williams & Wilkins
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:OBJECTIVE—We previously reported that a systemic liver X receptor (LXR) agonist promoted macrophage reverse-cholesterol transport (mRCT) in vivo. Because LXR are expressed in multiple tissues involved in RCT (macrophages, liver, intestine), we analyzed the effect of tissue-specific LXR agonism on mRCT. METHODS AND RESULTS—In initial studies, the systemic LXR agonist GW3965 failed to promote mRCT in a setting in which LXR was expressed in macrophages but not in liver or intestine. To evaluate the effect of LXR activation specifically in small intestine on mRCT, wild-type mice were treated with either intestinal-specific LXR agonist (GW6340) or systemic LXR agonist (GW3965). Both GW3965 and GW6340 significantly promoted excretion of [H]-sterol in feces by 162% and 52%, respectively. To evaluate the requirement for macrophage LXR activation, we assessed the ability of GW3965 to promote mRCT in wild-type mice using primary macrophages deficient in LXRα/β vs wild-type macrophages. Whereas GW3965 treatment promoted fecal excretion compared with vehicle, its overall ability to promote mRCT was significantly attenuated using LXRα/β knockout macrophages. CONCLUSION—We demonstrate that intestinal-specific LXR agonism promotes macrophage RCT in vivo and that macrophage LXR itself plays an important, but not predominant, role in promoting RCT in response to an LXR agonist.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1079-5642
1524-4636
DOI:10.1161/ATVBAHA.109.195693