A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing

Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of mechanical engineering Vol. 30; no. 6; pp. 1347 - 1356
Main Authors Shao, Si-Yu, Sun, Wen-Jun, Yan, Ru-Qiang, Wang, Peng, Gao, Robert X
Format Journal Article
LanguageEnglish
Published Beijing Chinese Mechanical Engineering Society 01.11.2017
Springer Nature B.V
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA%Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China%School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
EditionEnglish ed.
Subjects
Online AccessGet full text
ISSN1000-9345
2192-8258
DOI10.1007/s10033-017-0189-y

Cover

Loading…
Abstract Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing work- ing status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by- layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierar- chical representations, which are suitable for fault classi- fication, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
AbstractList Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing work- ing status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by- layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierar- chical representations, which are suitable for fault classi- fication, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors,as it directly influences the performance of fault recognition.However,high quality features need expert knowledge and human intervention.In this paper,a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors.It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis.The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM),and is trained using layer-bylayer pre-training algorithm.Compared with traditional diagnostic approaches where feature extraction is needed,the presented approach has the ability of learning hierarchical representations,which are suitable for fault classification,directly from frequency distribution of the measurement data.The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance.Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors.This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
Author Si-Yu Shao;Wen-Jun Sun;Ru-Qiang Yan;Peng Wang;Robert X Gao
AuthorAffiliation School of Instrument Science and Engineering, SoutheastUniversity, Nanjing 210096, China;Department of Mechanical and Aerospace Engineering, CaseWestern Reserve University, Cleveland 44106, USA
AuthorAffiliation_xml – name: School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China%School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China;Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA%Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA
Author_xml – sequence: 1
  givenname: Si-Yu
  surname: Shao
  fullname: Shao, Si-Yu
  organization: School of Instrument Science and Engineering, Southeast University
– sequence: 2
  givenname: Wen-Jun
  surname: Sun
  fullname: Sun, Wen-Jun
  organization: School of Instrument Science and Engineering, Southeast University
– sequence: 3
  givenname: Ru-Qiang
  orcidid: 0000-0003-4341-6535
  surname: Yan
  fullname: Yan, Ru-Qiang
  email: ruqiang@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Department of Mechanical and Aerospace Engineering, Case Western Reserve University
– sequence: 4
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University
– sequence: 5
  givenname: Robert X
  surname: Gao
  fullname: Gao, Robert X
  organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University
BookMark eNp9kE9PwjAYxhuDiYB-AG-NnjxM-2d065GAKAnGmOi56Uo7RrAd7Rbh21syIokHDn3bps_vefs-A9CzzmoAbjF6xAhlTyFWShOEs7hynuwvQJ9gTpKcjPIe6MdnlHCajq7AIIR1vDGM8z74GMOp1jVcaOltZUs4rmvvpFpB4zycyXbTwGklS-tCFaAzcG6XrWoqZ-Gba5wPsIonaVsjVdP66HANLo3cBH1z3Ifga_b8OXlNFu8v88l4kag0Z02ikEoRTwtdmCI1XCJkcozpEmVEGYqLzMg8Vm1SxLIl0ozjlEmiqeaMs2JJh-Ch8_2R1khbirVrvY0dxXpXql0hNIlpIIZQHrX3nTbOtm11aE5iQkackhRnLKqyTqW8C8FrI1TVyMOsjZfVRmAkDlmLLmsR3cUha7GPJP5H1r76ln5_liEdE-pDbNqf_nQOujs2WjlbbiP314lllHMWM6W_3D2eLQ
CitedBy_id crossref_primary_10_1109_TII_2022_3218737
crossref_primary_10_1155_2020_8843759
crossref_primary_10_1109_TIM_2019_2928346
crossref_primary_10_1109_ACCESS_2019_2940769
crossref_primary_10_1109_ACCESS_2020_3017276
crossref_primary_10_1016_j_promfg_2020_02_181
crossref_primary_10_1109_TIM_2019_2925247
crossref_primary_10_1016_j_engappai_2023_106139
crossref_primary_10_1088_2631_8695_ad4771
crossref_primary_10_3390_app14198949
crossref_primary_10_1016_j_ymssp_2019_106587
crossref_primary_10_3390_app10113755
crossref_primary_10_3390_en14248523
crossref_primary_10_1109_TIM_2024_3502781
crossref_primary_10_1016_j_eswa_2020_114060
crossref_primary_10_1186_s10033_021_00569_0
crossref_primary_10_3390_machines10040246
crossref_primary_10_3390_electronics13234807
crossref_primary_10_3390_machines10040249
crossref_primary_10_1177_09574565221139638
crossref_primary_10_1016_j_eswa_2024_125137
crossref_primary_10_1016_j_measurement_2024_116589
crossref_primary_10_1007_s00170_020_05449_w
crossref_primary_10_1088_1742_6596_1820_1_012034
crossref_primary_10_1016_j_knosys_2024_111609
crossref_primary_10_38016_jista_878854
crossref_primary_10_1007_s10462_022_10243_z
crossref_primary_10_3390_en14164886
crossref_primary_10_2139_ssrn_3986719
crossref_primary_10_1111_mice_12848
crossref_primary_10_1186_s10033_021_00551_w
crossref_primary_10_3390_math11133008
crossref_primary_10_1016_j_aej_2020_04_014
crossref_primary_10_1007_s00500_022_06755_z
crossref_primary_10_1016_j_measurement_2024_116216
crossref_primary_10_3390_lubricants10050102
crossref_primary_10_3390_sym14030591
crossref_primary_10_1016_j_compind_2018_12_004
crossref_primary_10_3390_s21124070
crossref_primary_10_3390_su10124779
crossref_primary_10_1016_j_jjimei_2022_100107
crossref_primary_10_3390_s18061735
crossref_primary_10_3390_e23060751
crossref_primary_10_1186_s10033_021_00566_3
crossref_primary_10_1080_10643389_2023_2252313
crossref_primary_10_1038_s41598_024_63086_9
crossref_primary_10_3390_a16010009
crossref_primary_10_1016_j_promfg_2020_07_005
crossref_primary_10_1016_j_simpat_2019_101981
crossref_primary_10_1155_2020_8888627
crossref_primary_10_1007_s42417_022_00848_7
crossref_primary_10_1016_j_compind_2021_103461
crossref_primary_10_1177_0309524X221114621
crossref_primary_10_1186_s10033_020_00514_7
crossref_primary_10_3390_machines11080827
crossref_primary_10_1109_TRO_2021_3129630
crossref_primary_10_1016_j_mfglet_2024_09_172
crossref_primary_10_1016_j_compind_2018_07_002
crossref_primary_10_1109_ACCESS_2019_2950240
crossref_primary_10_1088_1402_4896_ad6aa3
crossref_primary_10_1016_j_ecolind_2023_111526
crossref_primary_10_1016_j_imavis_2022_104545
crossref_primary_10_1016_j_ymssp_2018_05_050
crossref_primary_10_1371_journal_pone_0228324
crossref_primary_10_3390_s22010056
crossref_primary_10_1109_ACCESS_2019_2926527
crossref_primary_10_1109_TIM_2024_3522623
crossref_primary_10_3390_s20247205
crossref_primary_10_3390_app12020688
crossref_primary_10_1049_iet_epa_2019_0101
crossref_primary_10_1007_s10489_021_03004_y
crossref_primary_10_1016_j_compind_2021_103505
crossref_primary_10_3390_machines11080778
crossref_primary_10_1007_s00170_019_04289_7
crossref_primary_10_1007_s42417_021_00286_x
crossref_primary_10_1109_ACCESS_2021_3115665
crossref_primary_10_1109_TII_2018_2864759
crossref_primary_10_1177_0954407020964625
crossref_primary_10_1016_j_compind_2020_103244
crossref_primary_10_1007_s10845_023_02093_5
crossref_primary_10_1088_1361_6501_ad0691
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1109_ACCESS_2019_2938227
crossref_primary_10_1016_j_iot_2024_101164
crossref_primary_10_1016_j_measurement_2021_110079
crossref_primary_10_1155_2021_3083190
crossref_primary_10_1007_s00607_024_01348_0
crossref_primary_10_1088_1361_6501_ad1708
crossref_primary_10_1007_s10845_021_01742_x
crossref_primary_10_1016_j_jprocont_2023_103023
crossref_primary_10_1016_j_engappai_2023_106834
crossref_primary_10_1784_insi_2024_66_12_747
crossref_primary_10_3390_s24237865
crossref_primary_10_1109_TASE_2020_2997094
crossref_primary_10_1177_0959651820936969
crossref_primary_10_1186_s10033_021_00568_1
crossref_primary_10_3390_s21124024
crossref_primary_10_1051_e3sconf_202346501024
Cites_doi 10.1016/j.eswa.2012.01.214
10.3901/CJME.2014.1103.166
10.21437/Interspeech.2010-304
10.1109/TIE.2016.2519325
10.1016/j.sigpro.2013.04.015
10.1561/2200000006
10.1145/2647868.2654889
10.3901/CJME.2015.1026.127
10.1109/TIE.2012.2216242
10.1016/j.ress.2013.02.022
10.1109/TII.2015.2462315
10.1109/TMECH.2006.875568
10.3901/CJME.2015.1211.145
10.1007/s00779-014-0800-5
10.1109/TII.2014.2307013
10.1038/nature14539
10.1016/j.measurement.2016.04.007
10.1109/TII.2015.2463680
10.1109/MCI.2010.938364
10.1007/978-3-662-45586-9_12
10.1109/ICASSP.2013.6639343
10.1109/CVPR.2016.90
10.1109/TIE.2014.2375853
10.1126/science.1127647
10.1016/j.tics.2007.09.004
10.1109/I2MTC.2015.7151275
10.1561/2000000039
10.1109/ACCESS.2014.2325029
10.1016/j.ymssp.2013.06.001
10.3901/CJME.2016.0408.048
10.1109/TII.2013.2289941
10.1109/ICASSP.2013.6639344
10.1515/teme-2014-1006
10.1016/S0079-6123(06)65034-6
10.3901/CJME.2015.1214.147
10.1016/j.ymssp.2015.10.025
10.1109/CVPR.2015.7298594
10.7551/mitpress/7503.001.0001
10.1109/TIM.2011.2169182
10.1109/TII.2012.2198659
10.1016/j.eswa.2013.12.026
10.1162/neco.2006.18.7.1527
ContentType Journal Article
Copyright The Author(s) 2017
Chinese Journal of Mechanical Engineering is a copyright of Springer, (2017). All Rights Reserved. © 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: The Author(s) 2017
– notice: Chinese Journal of Mechanical Engineering is a copyright of Springer, (2017). All Rights Reserved. © 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s10033-017-0189-y
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Springer Nature Link OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
EISSN 2192-8258
Edition English ed.
EndPage 1356
ExternalDocumentID jxgcxb_e201706008
10_1007_s10033_017_0189_y
673996409
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51575102
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: The Fundamental Research Funds for the Central Universities and Research Innovation Program for College Graduates of Jiangsu Province
  grantid: KYLX16_0191
– fundername: National Natural Science Foundation of China; Fundamental Research Funds for the Central Universities of China,and Jiangsu Provincial Research Innovation Program for College Graduates of China
  funderid: (Grant 51575102); (Grant KYLX16_0191)
GroupedDBID -03
-0C
-SC
-S~
06D
0R~
0VY
29B
29~
2B.
2C0
2RA
30V
4.4
5VR
8FE
8FG
92H
92I
92L
92M
96X
9D9
9DC
AAIAL
AAJKR
AAKKN
AARHV
AARTL
AAWCG
AAYIU
AAYQN
AAYTO
AAYZJ
AAZMS
ABFTD
ABJCF
ABJOX
ABTHY
ABTMW
ACACY
ACCUX
ACGFS
ACKNC
ADBBV
ADHIR
ADINQ
AEBTG
AEGNC
AEJHL
AENEX
AEOHA
AEPYU
AETCA
AFGXO
AFKRA
AFLOW
AFNRJ
AFUIB
AFWTZ
AFZKB
AGAYW
AGQMX
AGWZB
AGYKE
AHAVH
AHBXF
AHBYD
AHKAY
AHSBF
AIIXL
AJBLW
AJRNO
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ANMIH
AUKKA
BAPOH
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CAJUS
CCEZO
CCPQU
CEKLB
CHBEP
CQIGP
CS3
CW9
DU5
EBS
EJD
ESBYG
FA0
FIGPU
FRRFC
FYJPI
GGRSB
GQ6
GQ7
GROUPED_DOAJ
HCIFZ
HF~
HMJXF
HRMNR
HZ~
I0C
JBSCW
JUIAU
KOV
L6V
M4Y
M7S
NU0
O9-
OK1
PIMPY
PROAC
PTHSS
Q--
Q-2
R-C
RLLFE
RSV
RT3
SCL
SDH
SEG
SHX
SNX
SOJ
T8S
TCJ
TGT
U1F
U1G
U2A
U5C
U5M
UG4
VC2
W48
W92
~A9
~M1
~WA
AAXDM
ABEEZ
ACULB
ADMLS
AFBBN
CAJEC
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
4A8
93N
PMFND
PSX
ID FETCH-LOGICAL-c486t-c0c4094bebfb4f9a00f8113d072cf31b7fa81b7ef4067d0e69146a2e3e9696bd3
IEDL.DBID 8FG
ISSN 1000-9345
IngestDate Thu May 29 04:10:08 EDT 2025
Fri Jul 25 11:07:07 EDT 2025
Tue Jul 01 01:54:23 EDT 2025
Thu Apr 24 23:04:01 EDT 2025
Fri Feb 21 02:29:05 EST 2025
Wed Feb 14 09:55:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Fault diagnosis
Deep learning
Deep belief network
RBM
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-c0c4094bebfb4f9a00f8113d072cf31b7fa81b7ef4067d0e69146a2e3e9696bd3
Notes Fault diagnosis ; Deep learning ; Deep beliefnetwork. RBM ; Classification
11-2737/TH
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing work- ing status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by- layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierar- chical representations, which are suitable for fault classi- fication, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4341-6535
OpenAccessLink https://www.proquest.com/docview/2259324176?pq-origsite=%requestingapplication%
PQID 2259324176
PQPubID 4406321
PageCount 10
ParticipantIDs wanfang_journals_jxgcxb_e201706008
proquest_journals_2259324176
crossref_citationtrail_10_1007_s10033_017_0189_y
crossref_primary_10_1007_s10033_017_0189_y
springer_journals_10_1007_s10033_017_0189_y
chongqing_primary_673996409
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Chinese journal of mechanical engineering
PublicationTitleAbbrev Chin. J. Mech. Eng
PublicationTitleAlternate Chinese Journal of Mechanical Engineering
PublicationTitle_FL Chinese Journal of Mechanical Engineering
PublicationYear 2017
Publisher Chinese Mechanical Engineering Society
Springer Nature B.V
Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA%Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China%School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
Publisher_xml – name: Chinese Mechanical Engineering Society
– name: Springer Nature B.V
– name: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA%Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA
– name: School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China%School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
References X Yang, R Yan, R X Gao. Induction motor fault diagnosis using multiple class feature selection. Proceedings of 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Pisa, Italy, May 11-15, 2015: 256–260.
G E Hinton. Learning multiple layers of representation. Trends in Cognitive Sciences, 2007, 11(11): 428–34.
Y Bengio. Learning deep architectures for AI. Foundations & Trends® in Machine Learning, 2009, 2(1): 1–55.
G Chen, L Qie, A Zhang, et al. Improved CICA algorithm used for single channel compound fault diagnosis of rolling bearings. Chinese Journal of Mechanical Engineering, 2016, 29(1): 204–211.
J Antonino-Daviu, S Aviyente, E G Strangas, et al. Scale invariant feature extraction algorithm for the automatic diagnosis of rotor asymmetries in induction motors. IEEE Transactions on Industrial Informatics, 2013, 9(1): 100–108.
H Keskes, A Braham. Recursive undecimated wavelet packet transform and DAG SVM for induction motor diagnosis. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1059–1066.
J Sun, A Steinecker, P Glocker. Application of deep belief networks for precision mechanism quality inspection. Precision Assembly Technologies and Systems, 2014: 87–93.
V T Tran, F Althobiani, A Ball. An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks. Expert Systems with Applications, 2014, 41(9): 4113–4122.
C Chen, B Zhang, G Vachtsevanos. Prediction of machine health condition using neuro-fuzzy and Bayesian algorithms. IEEE Transactions on Instrumentation and Measurement, 2012, 61(2): 297–306.
Q V Le. Building high-level features using large scale unsupervised learning. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, May 26-31, 2013: 8595–8598.
R Salakhutdinov, G Hinton. Deep Boltzmann Machines. Journal of Machine Learning Research, 2009, 5(2): 1967–2006.
T Boukra, A Lebaroud, G Clerc. Statistical and neural-network approaches for the classification of induction machine faults using the ambiguity plane representation. IEEE Transactions on Industrial Electronics, 2013, 60(9): 4034–4042.
H Gao, L Liang, X Chen, et al. Feature extraction and recognition for rolling element bearing fault utilizing short-time Fourier transform and non-negative matrix factorization. Chinese Journal of Mechanical Engineering, 2015, 28(1): 96–105.
G E Hinton. A practical guide to training restricted Boltzmann machines. Momentum, 2010, 9(1): 599–619.
G E Hinton. To recognize shapes, first learn to generate images. Progress in Brain Research, 2007, 165(6): 535–47.
K He, X Zhang, S Ren, et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, June 27-30, 2016: 770–778.
Y L Murphey, M A Masru, Z Chen, et al. Model-based fault diagnosis in electric drives using machine learning. IEEE/ASME Transactions on Mechatronics, 2006, 11(3): 290–303.
A R Mohamed, D Yu, L Deng. Investigation of full-sequence training of deep belief networks for speech recognition. Proceedings of the International Speech Communication Association Annual Conference, Makuhari, Chiba, Japan, September 26-30, 2010: 2846–2849.
B Schölkopf, J Platt, T Hofmann. Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, 2007, 19: 153–160.
Y Lei, F Jia, J Lin, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137–3147.
P Tamilselvan, P Wang. Failure diagnosis using deep belief learning based health state classification. Reliability Engineering & Systems Safety, 2013, 115(7): 124–135.
J Faiz, V Ghorbanian, BM Ebrahimi. EMD-based analysis of industrial induction motors with broken rotor bars for identification of operating point at different supply modes. IEEE Transactions on Industrial Informatics, 2014, 10(2): 957–966.
C Szegedy, W Liu, Y Jia, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June 7–12, 2015: 1–9.
L Deng, G Hinton, B Kingsbury. New types of deep neural network learning for speech recognition and related applications: An overview. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, May 26-31, 2013: 8599–8603.
M Riera-Guasp, J A Antonino-Daviu, G A Capolino. Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: state of the art. IEEE Transactions on Industrial Electronics, 2015, 62(3):1746–1759.
X W Chen, X Lin. Big data deep learning: challenges and perspectives. IEEE Access, 2014, 2: 514–525.
G E Hinton, S Osindero, Y W Teh. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527–1554.
M Zhang, J Tang, X Zhang, et al. Intelligent diagnosis of short hydraulic signal based on improved EEMD and SVM with few low-dimensional training samples. Chinese Journal of Mechanical Engineering, 2016, 29(2): 396–405.
G E Hinton, R R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507.
Y LeCun, Y Bengio, G Hinton. Deep learning. Nature, 2015, 521(7553): 436–444.
Y Jia, E Shelhamer, J Donahue, et al. Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM international Conference on Multimedia, Orlando, Florida, USA, November 3-7, 2014: 675–678.
A Steinecker. Automated fault detection using deep belief networks for the quality inspection of electromotors. tm - Technisches Messen. tm - Technisches Messen, 2014, 81(5): 255–263.
R Yan, R X Gao, X Chen. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 2014, 96: 1–15.
Y Wang, F Zhang, T Cui, et al. Fault diagnosis for manifold absolute pressure sensor (MAP) of diesel engine based on Elman neural network observer. Chinese Journal of Mechanical Engineering, 2016, 29(2): 386–395.
C Xiong, S Merity, R Socher. Dynamic memory networks for visual and textual question answering//Proceedings of the International Conference on Machine Learning, New York City, NY, USA, June 19-24, 2016: 2397–2406.
K S Tai, R Socher, C D Manning. Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv: 1503.00075, 2015.
L Deng, D Yu. Deep learning: methods and applications. Foundations and Trends® in Signal Processing, 2014, 7(3–4): 197–387.
J Guo, X Xie, R Bie, et al. Structural health monitoring by using a sparse coding-based deep learning algorithm with wireless sensor networks. Personal and Ubiquitous Computing, 2014, 18(8): 1977–1987.
Y Cai, H Wang, X Chen, et al. Vehicle detection based on visual saliency and deep sparse convolution hierarchical model. Chinese Journal of Mechanical Engineering, 2016, 29(4): 765–772.
W Sun, S Shao, R Zhao, et al. A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement, 2016, 89: 171–178.
P Karvelis, G Georgoulas, I P Tsoumas, et al. A symbolic representation approach for the diagnosis of broken rotor bars in induction motors. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1028–1037.
D Matić, F Kulić, M Pineda-sánchez, et al. Support vector machine classifier for diagnosis in electrical machines: Application to broken bar. Expert Systems with Applications, 2012, 39(10): 8681–8689.
J Wang, R X Gao, R Yan. Multi-scale enveloping order spectrogram for rotating machine health diagnosis. Mechanical Systems and Signal Processing, 2014, 46(1): 28–44.
B Boashash. Time-frequency signal analysis and processing: A comprehensive reference. Academic Press, 2015.
I Arel, D C Rose, T P Karnowski. Research frontier: deep machine learning–a new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine, 2010, 5(4): 13–18.
M H Drif, A J Cardoso. Stator fault diagnostics in squirrel cage three-phase induction motor drives using the instantaneous active and reactive power signature analyses. IEEE Transactions on Industrial Informatics, 2014, 10(2):1348–1360.
[34] F Jia, Y Lei, J Lin, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal Processing, 2016, 72: 303–15.
189_CR23
189_CR45
189_CR22
189_CR44
189_CR25
189_CR47
189_CR24
189_CR46
189_CR41
189_CR40
189_CR21
189_CR43
189_CR20
189_CR42
189_CR19
189_CR16
189_CR38
189_CR15
189_CR37
189_CR18
189_CR17
189_CR39
189_CR1
189_CR2
189_CR3
189_CR4
189_CR12
189_CR34
189_CR5
189_CR11
189_CR33
189_CR6
189_CR14
189_CR36
189_CR7
189_CR13
189_CR35
189_CR8
189_CR30
189_CR9
189_CR10
189_CR32
189_CR31
189_CR27
189_CR26
189_CR29
189_CR28
References_xml – reference: Y Cai, H Wang, X Chen, et al. Vehicle detection based on visual saliency and deep sparse convolution hierarchical model. Chinese Journal of Mechanical Engineering, 2016, 29(4): 765–772.
– reference: T Boukra, A Lebaroud, G Clerc. Statistical and neural-network approaches for the classification of induction machine faults using the ambiguity plane representation. IEEE Transactions on Industrial Electronics, 2013, 60(9): 4034–4042.
– reference: Y Wang, F Zhang, T Cui, et al. Fault diagnosis for manifold absolute pressure sensor (MAP) of diesel engine based on Elman neural network observer. Chinese Journal of Mechanical Engineering, 2016, 29(2): 386–395.
– reference: G Chen, L Qie, A Zhang, et al. Improved CICA algorithm used for single channel compound fault diagnosis of rolling bearings. Chinese Journal of Mechanical Engineering, 2016, 29(1): 204–211.
– reference: C Chen, B Zhang, G Vachtsevanos. Prediction of machine health condition using neuro-fuzzy and Bayesian algorithms. IEEE Transactions on Instrumentation and Measurement, 2012, 61(2): 297–306.
– reference: C Xiong, S Merity, R Socher. Dynamic memory networks for visual and textual question answering//Proceedings of the International Conference on Machine Learning, New York City, NY, USA, June 19-24, 2016: 2397–2406.
– reference: G E Hinton. Learning multiple layers of representation. Trends in Cognitive Sciences, 2007, 11(11): 428–34.
– reference: G E Hinton, R R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507.
– reference: Y LeCun, Y Bengio, G Hinton. Deep learning. Nature, 2015, 521(7553): 436–444.
– reference: M H Drif, A J Cardoso. Stator fault diagnostics in squirrel cage three-phase induction motor drives using the instantaneous active and reactive power signature analyses. IEEE Transactions on Industrial Informatics, 2014, 10(2):1348–1360.
– reference: Y L Murphey, M A Masru, Z Chen, et al. Model-based fault diagnosis in electric drives using machine learning. IEEE/ASME Transactions on Mechatronics, 2006, 11(3): 290–303.
– reference: D Matić, F Kulić, M Pineda-sánchez, et al. Support vector machine classifier for diagnosis in electrical machines: Application to broken bar. Expert Systems with Applications, 2012, 39(10): 8681–8689.
– reference: H Gao, L Liang, X Chen, et al. Feature extraction and recognition for rolling element bearing fault utilizing short-time Fourier transform and non-negative matrix factorization. Chinese Journal of Mechanical Engineering, 2015, 28(1): 96–105.
– reference: Y Jia, E Shelhamer, J Donahue, et al. Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM international Conference on Multimedia, Orlando, Florida, USA, November 3-7, 2014: 675–678.
– reference: G E Hinton. A practical guide to training restricted Boltzmann machines. Momentum, 2010, 9(1): 599–619.
– reference: J Wang, R X Gao, R Yan. Multi-scale enveloping order spectrogram for rotating machine health diagnosis. Mechanical Systems and Signal Processing, 2014, 46(1): 28–44.
– reference: B Boashash. Time-frequency signal analysis and processing: A comprehensive reference. Academic Press, 2015.
– reference: L Deng, D Yu. Deep learning: methods and applications. Foundations and Trends® in Signal Processing, 2014, 7(3–4): 197–387.
– reference: G E Hinton, S Osindero, Y W Teh. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527–1554.
– reference: K S Tai, R Socher, C D Manning. Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv: 1503.00075, 2015.
– reference: B Schölkopf, J Platt, T Hofmann. Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, 2007, 19: 153–160.
– reference: P Karvelis, G Georgoulas, I P Tsoumas, et al. A symbolic representation approach for the diagnosis of broken rotor bars in induction motors. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1028–1037.
– reference: Q V Le. Building high-level features using large scale unsupervised learning. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, May 26-31, 2013: 8595–8598.
– reference: C Szegedy, W Liu, Y Jia, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June 7–12, 2015: 1–9.
– reference: X Yang, R Yan, R X Gao. Induction motor fault diagnosis using multiple class feature selection. Proceedings of 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Pisa, Italy, May 11-15, 2015: 256–260.
– reference: V T Tran, F Althobiani, A Ball. An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks. Expert Systems with Applications, 2014, 41(9): 4113–4122.
– reference: A R Mohamed, D Yu, L Deng. Investigation of full-sequence training of deep belief networks for speech recognition. Proceedings of the International Speech Communication Association Annual Conference, Makuhari, Chiba, Japan, September 26-30, 2010: 2846–2849.
– reference: X W Chen, X Lin. Big data deep learning: challenges and perspectives. IEEE Access, 2014, 2: 514–525.
– reference: J Guo, X Xie, R Bie, et al. Structural health monitoring by using a sparse coding-based deep learning algorithm with wireless sensor networks. Personal and Ubiquitous Computing, 2014, 18(8): 1977–1987.
– reference: W Sun, S Shao, R Zhao, et al. A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement, 2016, 89: 171–178.
– reference: J Antonino-Daviu, S Aviyente, E G Strangas, et al. Scale invariant feature extraction algorithm for the automatic diagnosis of rotor asymmetries in induction motors. IEEE Transactions on Industrial Informatics, 2013, 9(1): 100–108.
– reference: H Keskes, A Braham. Recursive undecimated wavelet packet transform and DAG SVM for induction motor diagnosis. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1059–1066.
– reference: R Yan, R X Gao, X Chen. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 2014, 96: 1–15.
– reference: I Arel, D C Rose, T P Karnowski. Research frontier: deep machine learning–a new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine, 2010, 5(4): 13–18.
– reference: Y Bengio. Learning deep architectures for AI. Foundations & Trends® in Machine Learning, 2009, 2(1): 1–55.
– reference: P Tamilselvan, P Wang. Failure diagnosis using deep belief learning based health state classification. Reliability Engineering & Systems Safety, 2013, 115(7): 124–135.
– reference: G E Hinton. To recognize shapes, first learn to generate images. Progress in Brain Research, 2007, 165(6): 535–47.
– reference: J Sun, A Steinecker, P Glocker. Application of deep belief networks for precision mechanism quality inspection. Precision Assembly Technologies and Systems, 2014: 87–93.
– reference: K He, X Zhang, S Ren, et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, June 27-30, 2016: 770–778.
– reference: A Steinecker. Automated fault detection using deep belief networks for the quality inspection of electromotors. tm - Technisches Messen. tm - Technisches Messen, 2014, 81(5): 255–263.
– reference: J Faiz, V Ghorbanian, BM Ebrahimi. EMD-based analysis of industrial induction motors with broken rotor bars for identification of operating point at different supply modes. IEEE Transactions on Industrial Informatics, 2014, 10(2): 957–966.
– reference: [34] F Jia, Y Lei, J Lin, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal Processing, 2016, 72: 303–15.
– reference: L Deng, G Hinton, B Kingsbury. New types of deep neural network learning for speech recognition and related applications: An overview. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, May 26-31, 2013: 8599–8603.
– reference: M Zhang, J Tang, X Zhang, et al. Intelligent diagnosis of short hydraulic signal based on improved EEMD and SVM with few low-dimensional training samples. Chinese Journal of Mechanical Engineering, 2016, 29(2): 396–405.
– reference: Y Lei, F Jia, J Lin, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137–3147.
– reference: R Salakhutdinov, G Hinton. Deep Boltzmann Machines. Journal of Machine Learning Research, 2009, 5(2): 1967–2006.
– reference: M Riera-Guasp, J A Antonino-Daviu, G A Capolino. Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: state of the art. IEEE Transactions on Industrial Electronics, 2015, 62(3):1746–1759.
– ident: 189_CR10
  doi: 10.1016/j.eswa.2012.01.214
– ident: 189_CR44
– ident: 189_CR1
  doi: 10.3901/CJME.2014.1103.166
– ident: 189_CR42
  doi: 10.21437/Interspeech.2010-304
– ident: 189_CR17
– ident: 189_CR11
  doi: 10.1109/TIE.2016.2519325
– ident: 189_CR18
  doi: 10.1016/j.sigpro.2013.04.015
– ident: 189_CR22
  doi: 10.1561/2200000006
– ident: 189_CR23
  doi: 10.1145/2647868.2654889
– ident: 189_CR2
  doi: 10.3901/CJME.2015.1026.127
– ident: 189_CR12
  doi: 10.1109/TIE.2012.2216242
– ident: 189_CR32
– ident: 189_CR35
  doi: 10.1016/j.ress.2013.02.022
– ident: 189_CR13
  doi: 10.1109/TII.2015.2462315
– ident: 189_CR15
  doi: 10.1109/TMECH.2006.875568
– ident: 189_CR5
  doi: 10.3901/CJME.2015.1211.145
– ident: 189_CR37
  doi: 10.1007/s00779-014-0800-5
– ident: 189_CR4
  doi: 10.1109/TII.2014.2307013
– ident: 189_CR30
  doi: 10.1038/nature14539
– ident: 189_CR40
  doi: 10.1016/j.measurement.2016.04.007
– ident: 189_CR8
  doi: 10.1109/TII.2015.2463680
– ident: 189_CR21
  doi: 10.1109/MCI.2010.938364
– ident: 189_CR39
  doi: 10.1007/978-3-662-45586-9_12
– ident: 189_CR43
– ident: 189_CR28
  doi: 10.1109/ICASSP.2013.6639343
– ident: 189_CR24
  doi: 10.1109/CVPR.2016.90
– ident: 189_CR3
  doi: 10.1109/TIE.2014.2375853
– ident: 189_CR20
  doi: 10.1126/science.1127647
– ident: 189_CR19
  doi: 10.1016/j.tics.2007.09.004
– ident: 189_CR47
  doi: 10.1109/I2MTC.2015.7151275
– ident: 189_CR31
  doi: 10.1561/2000000039
– ident: 189_CR41
  doi: 10.1109/ACCESS.2014.2325029
– ident: 189_CR16
  doi: 10.1016/j.ymssp.2013.06.001
– ident: 189_CR26
  doi: 10.3901/CJME.2016.0408.048
– ident: 189_CR7
  doi: 10.1109/TII.2013.2289941
– ident: 189_CR29
  doi: 10.1109/ICASSP.2013.6639344
– ident: 189_CR38
  doi: 10.1515/teme-2014-1006
– ident: 189_CR27
  doi: 10.1016/S0079-6123(06)65034-6
– ident: 189_CR33
– ident: 189_CR9
  doi: 10.3901/CJME.2015.1214.147
– ident: 189_CR34
  doi: 10.1016/j.ymssp.2015.10.025
– ident: 189_CR25
  doi: 10.1109/CVPR.2015.7298594
– ident: 189_CR45
  doi: 10.7551/mitpress/7503.001.0001
– ident: 189_CR14
  doi: 10.1109/TIM.2011.2169182
– ident: 189_CR6
  doi: 10.1109/TII.2012.2198659
– ident: 189_CR36
  doi: 10.1016/j.eswa.2013.12.026
– ident: 189_CR46
  doi: 10.1162/neco.2006.18.7.1527
SSID ssj0006118
Score 2.473102
Snippet Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of...
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors,as it directly influences the performance of...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1347
SubjectTerms Algorithms
Belief networks
Classification
Computer simulation
Deep learning
Diagnostic systems
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Engineering Thermodynamics
Fault diagnosis
Feature extraction
Feature recognition
Frequency distribution
Heat and Mass Transfer
Induction motors
Instrumentation
Machine learning
Machines
Manufacturing
Mechanical Engineering
Original Article
Power Electronics
Processes
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46X_RBvGLdlCA-KYWk9z4W5xjCBMHB3kLTnszJaKfbYPv3nvSyTpCBb4UmJyUnOZcm33cIuXdT6Svblabr6l83MmVmGIDELCXhcZCgi_c0wHnw6vWHzsvIHVU47nl9270-kiws9RbYTdcd01aV8SA01_vkwMXUXS_roRVtzK_HeYl_Yzis7bj1UeZfIjShwkeejb9wuN-OqYk2NwekBawnU3E23vJAvRNyXIWONCp1fUr2IDsjR1uEgufkLaJdgBmtWFPHNKoowynGprQXL6cL2i0v103mNFdUV-4okA10kOu6O3SCT3G21HiHAsB4QYa95_envlkVTTATJ_AWZsISnbJJkEo6KowZUwHndsp8K1E2R83EGKn6oNCT-ykDL0RbGVtgg-bJkal9SVpZnsEVoZ7CaCQIHIs70ik2vwuACRD3GITAwSDtzeyJWUmOoe-JYQqFn2AQVs-nSCq-cV32YioapmStDoHqEFodYm2Qh02XWt6Oxp1aSaLad3OB1gkDUof7nkEea8U1r3cIu6t02zT-XI2TlRRglRRDLLj-l8g2OdQ9S9xih7QW30u4wQBmIW-LBfsDgZ7lJQ
  priority: 102
  providerName: Springer Nature
Title A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
URI http://lib.cqvip.com/qk/85891X/201706/673996409.html
https://link.springer.com/article/10.1007/s10033-017-0189-y
https://www.proquest.com/docview/2259324176
https://d.wanfangdata.com.cn/periodical/jxgcxb-e201706008
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFLcYXLbDtMGmdTBkTTsNRdj5cJzTlJUWBAIBohKcrNixCxNKytpK8N_vvcRp2KWXJEocx_Jz3oft3-8R8iMpdeqiRAdJglM3umRBJq2GKMXwQhow8QIBzucX4mQSn94mt37Cbe63VXY6sVHUZW1wjvwQxh24GjFPxa_ZU4BZo3B11afQeEO2OFgaHOFyfLzSxILzFgrHoAVRnHSrmi10DrOYoY5mXGbBC3Ir3NfV9Aksxv82qnc8V2ulDcKnckU1fWWMxh_Ie-9F0rwV-0eyYatt8u4Vt-AOucrpkbUz6glUpzT37OEU3FQ6LpaPC3rU7rN7mNPaUUzi0YAc6HmNKXjoA1wV1RKhDw2W8ROZjEc3w5PA508ITCzFIjDMYPSmrXY6dlnBmJOcRyVLQ-MiDkIqwGlNrQOjnpbMigzUZhHayCJlji6jz2Szqiv7hVDhwDGRMg55rONGDyTWQizEBbOZ5XZAdle9p2YtTwZuGYNoCpowIKzrT2U89ThmwHhUPWkyikOBOBSKQ70MyM_VK119awrvdUJS_hecq37ADMhBJ7j-8ZrKvnvZ9oX_PE_Ns1Y2bNmGmPy6_ou75C0WbTGLe2Rz8Xdpv4HzstD7zQjdJ1v58d3ZCM6_RxeX13B3KIZwnIT5P7kd7RQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYWsBCcAFF2ImTOAeEVizLlnYrIbVSbyZ27KWoSrbsruj-KX4jM3lsymVvvUWK4zieyTxsf98AvIkLk_ooNkEc09KNKXiQKWcwS7EiVxZdfEIA5-lxMjmV387isx3422Fh6FhlZxNrQ11UltbIP6DeYaghRZp8ml8GVDWKdle7EhqNWhy69R9M2RYfD0Yo37dhOP5y8nkStFUFAitVsgwst5TTGGe8kT7LOfdKiKjgaWh9JHDoOYZyqfPo6tKCuyRDY5KHLnJEJGOKCPu9BbdlFGV0hFCNv24sfyJEA73j-MWRjLtd1AaqR1XTyCdwobJgTVwOP6tydoke6n-f2Ae6m73ZGlFU-rycXXN-4wdwv41a2bBRs4ew48pHcO8al-Fj-D5kI-fmrCVsnbFhy1bOMCxm43x1sWSj5lzf-YJVnlHRkBpUwaYVlfxh53iVlyuCWtTYySdweiMz-xR2y6p0z4AlHgMhpWQopJG13Ymdw9xLJNxlTrgB7G1mT88bXg46oobZGw5hALybT21bqnOquHGhe5JmEodGcWgSh14P4N3mka6_LY33OyHp9pdf6F5BB_C-E1x_e0tnr1vZ9o1_Xc3sldEubNiNuHq-_Y2v4M7kZHqkjw6OD_fgLj3W4CX3YXf5e-VeYOC0NC9rbWXw46Z_j3_ftyWZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB6qhaIPpfUHXrV2KT5ZgruXZJM8Hnc9tK2ioODbkk1mT0Vyp5cD_e87kx93J4jgWyCbSdgvmZ3JzvcNwEGY28j5ofXCkH_d2Fx6SYyWspRMpXFGS7xmgvPpmT6-Cv5ch9dNn9NpW-3ebknWnAZWaSrKo0nujpaIb9yDjD2sVHHiPa_AR0pUFNf09XV_7oq1UjUXTtIj-EHYbmu-ZoLFFW7GxeiBbv1ykVpEnvPN0oriU7i0GC2tRsMv8LkJI0Wvxv0rfMBiA9aXxAU34aInBogT0SiojkSvkQ8XFKeKYTq7L8WgLrS7nYqxE9zFo2I5iNMx9-ARt3SUFjPmPlRkxi24Gv6-7B97TQMFLwtiXXqZzDh9s2idDVySSulipfxcRt3M-YpQSilqjdDRqh7lEnVCfjPtoo-smWNzfxtWi3GBOyC0o8gkjoOuCmxQOYIQkZIhpSUmqLADu_PZM5NaKINrxiidokfogGzn02SN9ji3wLg3C9VkhsMQHIbhMM8dOJxf0tp7Y_BeC5JpvsGpIU9FwWmgIt2BXy1wi9NvGPvZYLsYfPc0yp6swW4tNyTjb-8y-QM-nQ-G5t_J2d9dWGMjNZ1xD1bLxxl-p7imtPvVu_sf42zsPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+for+Fault+Diagnosis+of+Induction+Motors+in+Manufacturing&rft.jtitle=Chinese+journal+of+mechanical+engineering&rft.au=Si-Yu%2C+Shao&rft.au=Wen-Jun%2C+Sun&rft.au=Ru-Qiang+Yan&rft.au=Wang%2C+Peng&rft.date=2017-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1000-9345&rft.eissn=2192-8258&rft.volume=30&rft.issue=6&rft.spage=1347&rft.epage=1356&rft_id=info:doi/10.1007%2Fs10033-017-0189-y
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85891X%2F85891X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjxgcxb-e%2Fjxgcxb-e.jpg