A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based...
Saved in:
Published in | Chinese journal of mechanical engineering Vol. 30; no. 6; pp. 1347 - 1356 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Chinese Mechanical Engineering Society
01.11.2017
Springer Nature B.V Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA%Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China%School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China |
Edition | English ed. |
Subjects | |
Online Access | Get full text |
ISSN | 1000-9345 2192-8258 |
DOI | 10.1007/s10033-017-0189-y |
Cover
Loading…
Abstract | Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing work- ing status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by- layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierar- chical representations, which are suitable for fault classi- fication, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition. |
---|---|
AbstractList | Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing work- ing status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by- layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierar- chical representations, which are suitable for fault classi- fication, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition. Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors,as it directly influences the performance of fault recognition.However,high quality features need expert knowledge and human intervention.In this paper,a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors.It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis.The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM),and is trained using layer-bylayer pre-training algorithm.Compared with traditional diagnostic approaches where feature extraction is needed,the presented approach has the ability of learning hierarchical representations,which are suitable for fault classification,directly from frequency distribution of the measurement data.The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance.Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors.This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition. Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition. |
Author | Si-Yu Shao;Wen-Jun Sun;Ru-Qiang Yan;Peng Wang;Robert X Gao |
AuthorAffiliation | School of Instrument Science and Engineering, SoutheastUniversity, Nanjing 210096, China;Department of Mechanical and Aerospace Engineering, CaseWestern Reserve University, Cleveland 44106, USA |
AuthorAffiliation_xml | – name: School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China%School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China;Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA%Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA |
Author_xml | – sequence: 1 givenname: Si-Yu surname: Shao fullname: Shao, Si-Yu organization: School of Instrument Science and Engineering, Southeast University – sequence: 2 givenname: Wen-Jun surname: Sun fullname: Sun, Wen-Jun organization: School of Instrument Science and Engineering, Southeast University – sequence: 3 givenname: Ru-Qiang orcidid: 0000-0003-4341-6535 surname: Yan fullname: Yan, Ru-Qiang email: ruqiang@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Department of Mechanical and Aerospace Engineering, Case Western Reserve University – sequence: 4 givenname: Peng surname: Wang fullname: Wang, Peng organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University – sequence: 5 givenname: Robert X surname: Gao fullname: Gao, Robert X organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University |
BookMark | eNp9kE9PwjAYxhuDiYB-AG-NnjxM-2d065GAKAnGmOi56Uo7RrAd7Rbh21syIokHDn3bps_vefs-A9CzzmoAbjF6xAhlTyFWShOEs7hynuwvQJ9gTpKcjPIe6MdnlHCajq7AIIR1vDGM8z74GMOp1jVcaOltZUs4rmvvpFpB4zycyXbTwGklS-tCFaAzcG6XrWoqZ-Gba5wPsIonaVsjVdP66HANLo3cBH1z3Ifga_b8OXlNFu8v88l4kag0Z02ikEoRTwtdmCI1XCJkcozpEmVEGYqLzMg8Vm1SxLIl0ozjlEmiqeaMs2JJh-Ch8_2R1khbirVrvY0dxXpXql0hNIlpIIZQHrX3nTbOtm11aE5iQkackhRnLKqyTqW8C8FrI1TVyMOsjZfVRmAkDlmLLmsR3cUha7GPJP5H1r76ln5_liEdE-pDbNqf_nQOujs2WjlbbiP314lllHMWM6W_3D2eLQ |
CitedBy_id | crossref_primary_10_1109_TII_2022_3218737 crossref_primary_10_1155_2020_8843759 crossref_primary_10_1109_TIM_2019_2928346 crossref_primary_10_1109_ACCESS_2019_2940769 crossref_primary_10_1109_ACCESS_2020_3017276 crossref_primary_10_1016_j_promfg_2020_02_181 crossref_primary_10_1109_TIM_2019_2925247 crossref_primary_10_1016_j_engappai_2023_106139 crossref_primary_10_1088_2631_8695_ad4771 crossref_primary_10_3390_app14198949 crossref_primary_10_1016_j_ymssp_2019_106587 crossref_primary_10_3390_app10113755 crossref_primary_10_3390_en14248523 crossref_primary_10_1109_TIM_2024_3502781 crossref_primary_10_1016_j_eswa_2020_114060 crossref_primary_10_1186_s10033_021_00569_0 crossref_primary_10_3390_machines10040246 crossref_primary_10_3390_electronics13234807 crossref_primary_10_3390_machines10040249 crossref_primary_10_1177_09574565221139638 crossref_primary_10_1016_j_eswa_2024_125137 crossref_primary_10_1016_j_measurement_2024_116589 crossref_primary_10_1007_s00170_020_05449_w crossref_primary_10_1088_1742_6596_1820_1_012034 crossref_primary_10_1016_j_knosys_2024_111609 crossref_primary_10_38016_jista_878854 crossref_primary_10_1007_s10462_022_10243_z crossref_primary_10_3390_en14164886 crossref_primary_10_2139_ssrn_3986719 crossref_primary_10_1111_mice_12848 crossref_primary_10_1186_s10033_021_00551_w crossref_primary_10_3390_math11133008 crossref_primary_10_1016_j_aej_2020_04_014 crossref_primary_10_1007_s00500_022_06755_z crossref_primary_10_1016_j_measurement_2024_116216 crossref_primary_10_3390_lubricants10050102 crossref_primary_10_3390_sym14030591 crossref_primary_10_1016_j_compind_2018_12_004 crossref_primary_10_3390_s21124070 crossref_primary_10_3390_su10124779 crossref_primary_10_1016_j_jjimei_2022_100107 crossref_primary_10_3390_s18061735 crossref_primary_10_3390_e23060751 crossref_primary_10_1186_s10033_021_00566_3 crossref_primary_10_1080_10643389_2023_2252313 crossref_primary_10_1038_s41598_024_63086_9 crossref_primary_10_3390_a16010009 crossref_primary_10_1016_j_promfg_2020_07_005 crossref_primary_10_1016_j_simpat_2019_101981 crossref_primary_10_1155_2020_8888627 crossref_primary_10_1007_s42417_022_00848_7 crossref_primary_10_1016_j_compind_2021_103461 crossref_primary_10_1177_0309524X221114621 crossref_primary_10_1186_s10033_020_00514_7 crossref_primary_10_3390_machines11080827 crossref_primary_10_1109_TRO_2021_3129630 crossref_primary_10_1016_j_mfglet_2024_09_172 crossref_primary_10_1016_j_compind_2018_07_002 crossref_primary_10_1109_ACCESS_2019_2950240 crossref_primary_10_1088_1402_4896_ad6aa3 crossref_primary_10_1016_j_ecolind_2023_111526 crossref_primary_10_1016_j_imavis_2022_104545 crossref_primary_10_1016_j_ymssp_2018_05_050 crossref_primary_10_1371_journal_pone_0228324 crossref_primary_10_3390_s22010056 crossref_primary_10_1109_ACCESS_2019_2926527 crossref_primary_10_1109_TIM_2024_3522623 crossref_primary_10_3390_s20247205 crossref_primary_10_3390_app12020688 crossref_primary_10_1049_iet_epa_2019_0101 crossref_primary_10_1007_s10489_021_03004_y crossref_primary_10_1016_j_compind_2021_103505 crossref_primary_10_3390_machines11080778 crossref_primary_10_1007_s00170_019_04289_7 crossref_primary_10_1007_s42417_021_00286_x crossref_primary_10_1109_ACCESS_2021_3115665 crossref_primary_10_1109_TII_2018_2864759 crossref_primary_10_1177_0954407020964625 crossref_primary_10_1016_j_compind_2020_103244 crossref_primary_10_1007_s10845_023_02093_5 crossref_primary_10_1088_1361_6501_ad0691 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1109_ACCESS_2019_2938227 crossref_primary_10_1016_j_iot_2024_101164 crossref_primary_10_1016_j_measurement_2021_110079 crossref_primary_10_1155_2021_3083190 crossref_primary_10_1007_s00607_024_01348_0 crossref_primary_10_1088_1361_6501_ad1708 crossref_primary_10_1007_s10845_021_01742_x crossref_primary_10_1016_j_jprocont_2023_103023 crossref_primary_10_1016_j_engappai_2023_106834 crossref_primary_10_1784_insi_2024_66_12_747 crossref_primary_10_3390_s24237865 crossref_primary_10_1109_TASE_2020_2997094 crossref_primary_10_1177_0959651820936969 crossref_primary_10_1186_s10033_021_00568_1 crossref_primary_10_3390_s21124024 crossref_primary_10_1051_e3sconf_202346501024 |
Cites_doi | 10.1016/j.eswa.2012.01.214 10.3901/CJME.2014.1103.166 10.21437/Interspeech.2010-304 10.1109/TIE.2016.2519325 10.1016/j.sigpro.2013.04.015 10.1561/2200000006 10.1145/2647868.2654889 10.3901/CJME.2015.1026.127 10.1109/TIE.2012.2216242 10.1016/j.ress.2013.02.022 10.1109/TII.2015.2462315 10.1109/TMECH.2006.875568 10.3901/CJME.2015.1211.145 10.1007/s00779-014-0800-5 10.1109/TII.2014.2307013 10.1038/nature14539 10.1016/j.measurement.2016.04.007 10.1109/TII.2015.2463680 10.1109/MCI.2010.938364 10.1007/978-3-662-45586-9_12 10.1109/ICASSP.2013.6639343 10.1109/CVPR.2016.90 10.1109/TIE.2014.2375853 10.1126/science.1127647 10.1016/j.tics.2007.09.004 10.1109/I2MTC.2015.7151275 10.1561/2000000039 10.1109/ACCESS.2014.2325029 10.1016/j.ymssp.2013.06.001 10.3901/CJME.2016.0408.048 10.1109/TII.2013.2289941 10.1109/ICASSP.2013.6639344 10.1515/teme-2014-1006 10.1016/S0079-6123(06)65034-6 10.3901/CJME.2015.1214.147 10.1016/j.ymssp.2015.10.025 10.1109/CVPR.2015.7298594 10.7551/mitpress/7503.001.0001 10.1109/TIM.2011.2169182 10.1109/TII.2012.2198659 10.1016/j.eswa.2013.12.026 10.1162/neco.2006.18.7.1527 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Chinese Journal of Mechanical Engineering is a copyright of Springer, (2017). All Rights Reserved. © 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2017 – notice: Chinese Journal of Mechanical Engineering is a copyright of Springer, (2017). All Rights Reserved. © 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s10033-017-0189-y |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Springer Nature Link OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing |
EISSN | 2192-8258 |
Edition | English ed. |
EndPage | 1356 |
ExternalDocumentID | jxgcxb_e201706008 10_1007_s10033_017_0189_y 673996409 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51575102 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: The Fundamental Research Funds for the Central Universities and Research Innovation Program for College Graduates of Jiangsu Province grantid: KYLX16_0191 – fundername: National Natural Science Foundation of China; Fundamental Research Funds for the Central Universities of China,and Jiangsu Provincial Research Innovation Program for College Graduates of China funderid: (Grant 51575102); (Grant KYLX16_0191) |
GroupedDBID | -03 -0C -SC -S~ 06D 0R~ 0VY 29B 29~ 2B. 2C0 2RA 30V 4.4 5VR 8FE 8FG 92H 92I 92L 92M 96X 9D9 9DC AAIAL AAJKR AAKKN AARHV AARTL AAWCG AAYIU AAYQN AAYTO AAYZJ AAZMS ABFTD ABJCF ABJOX ABTHY ABTMW ACACY ACCUX ACGFS ACKNC ADBBV ADHIR ADINQ AEBTG AEGNC AEJHL AENEX AEOHA AEPYU AETCA AFGXO AFKRA AFLOW AFNRJ AFUIB AFWTZ AFZKB AGAYW AGQMX AGWZB AGYKE AHAVH AHBXF AHBYD AHKAY AHSBF AIIXL AJBLW AJRNO AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP ANMIH AUKKA BAPOH BCNDV BENPR BGLVJ BGNMA C24 C6C CAJUS CCEZO CCPQU CEKLB CHBEP CQIGP CS3 CW9 DU5 EBS EJD ESBYG FA0 FIGPU FRRFC FYJPI GGRSB GQ6 GQ7 GROUPED_DOAJ HCIFZ HF~ HMJXF HRMNR HZ~ I0C JBSCW JUIAU KOV L6V M4Y M7S NU0 O9- OK1 PIMPY PROAC PTHSS Q-- Q-2 R-C RLLFE RSV RT3 SCL SDH SEG SHX SNX SOJ T8S TCJ TGT U1F U1G U2A U5C U5M UG4 VC2 W48 W92 ~A9 ~M1 ~WA AAXDM ABEEZ ACULB ADMLS AFBBN CAJEC AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 4A8 93N PMFND PSX |
ID | FETCH-LOGICAL-c486t-c0c4094bebfb4f9a00f8113d072cf31b7fa81b7ef4067d0e69146a2e3e9696bd3 |
IEDL.DBID | 8FG |
ISSN | 1000-9345 |
IngestDate | Thu May 29 04:10:08 EDT 2025 Fri Jul 25 11:07:07 EDT 2025 Tue Jul 01 01:54:23 EDT 2025 Thu Apr 24 23:04:01 EDT 2025 Fri Feb 21 02:29:05 EST 2025 Wed Feb 14 09:55:46 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Fault diagnosis Deep learning Deep belief network RBM Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-c0c4094bebfb4f9a00f8113d072cf31b7fa81b7ef4067d0e69146a2e3e9696bd3 |
Notes | Fault diagnosis ; Deep learning ; Deep beliefnetwork. RBM ; Classification 11-2737/TH Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing work- ing status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by- layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierar- chical representations, which are suitable for fault classi- fication, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4341-6535 |
OpenAccessLink | https://www.proquest.com/docview/2259324176?pq-origsite=%requestingapplication% |
PQID | 2259324176 |
PQPubID | 4406321 |
PageCount | 10 |
ParticipantIDs | wanfang_journals_jxgcxb_e201706008 proquest_journals_2259324176 crossref_citationtrail_10_1007_s10033_017_0189_y crossref_primary_10_1007_s10033_017_0189_y springer_journals_10_1007_s10033_017_0189_y chongqing_primary_673996409 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Chinese journal of mechanical engineering |
PublicationTitleAbbrev | Chin. J. Mech. Eng |
PublicationTitleAlternate | Chinese Journal of Mechanical Engineering |
PublicationTitle_FL | Chinese Journal of Mechanical Engineering |
PublicationYear | 2017 |
Publisher | Chinese Mechanical Engineering Society Springer Nature B.V Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA%Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China%School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China |
Publisher_xml | – name: Chinese Mechanical Engineering Society – name: Springer Nature B.V – name: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA%Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA – name: School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China%School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China |
References | X Yang, R Yan, R X Gao. Induction motor fault diagnosis using multiple class feature selection. Proceedings of 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Pisa, Italy, May 11-15, 2015: 256–260. G E Hinton. Learning multiple layers of representation. Trends in Cognitive Sciences, 2007, 11(11): 428–34. Y Bengio. Learning deep architectures for AI. Foundations & Trends® in Machine Learning, 2009, 2(1): 1–55. G Chen, L Qie, A Zhang, et al. Improved CICA algorithm used for single channel compound fault diagnosis of rolling bearings. Chinese Journal of Mechanical Engineering, 2016, 29(1): 204–211. J Antonino-Daviu, S Aviyente, E G Strangas, et al. Scale invariant feature extraction algorithm for the automatic diagnosis of rotor asymmetries in induction motors. IEEE Transactions on Industrial Informatics, 2013, 9(1): 100–108. H Keskes, A Braham. Recursive undecimated wavelet packet transform and DAG SVM for induction motor diagnosis. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1059–1066. J Sun, A Steinecker, P Glocker. Application of deep belief networks for precision mechanism quality inspection. Precision Assembly Technologies and Systems, 2014: 87–93. V T Tran, F Althobiani, A Ball. An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks. Expert Systems with Applications, 2014, 41(9): 4113–4122. C Chen, B Zhang, G Vachtsevanos. Prediction of machine health condition using neuro-fuzzy and Bayesian algorithms. IEEE Transactions on Instrumentation and Measurement, 2012, 61(2): 297–306. Q V Le. Building high-level features using large scale unsupervised learning. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, May 26-31, 2013: 8595–8598. R Salakhutdinov, G Hinton. Deep Boltzmann Machines. Journal of Machine Learning Research, 2009, 5(2): 1967–2006. T Boukra, A Lebaroud, G Clerc. Statistical and neural-network approaches for the classification of induction machine faults using the ambiguity plane representation. IEEE Transactions on Industrial Electronics, 2013, 60(9): 4034–4042. H Gao, L Liang, X Chen, et al. Feature extraction and recognition for rolling element bearing fault utilizing short-time Fourier transform and non-negative matrix factorization. Chinese Journal of Mechanical Engineering, 2015, 28(1): 96–105. G E Hinton. A practical guide to training restricted Boltzmann machines. Momentum, 2010, 9(1): 599–619. G E Hinton. To recognize shapes, first learn to generate images. Progress in Brain Research, 2007, 165(6): 535–47. K He, X Zhang, S Ren, et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, June 27-30, 2016: 770–778. Y L Murphey, M A Masru, Z Chen, et al. Model-based fault diagnosis in electric drives using machine learning. IEEE/ASME Transactions on Mechatronics, 2006, 11(3): 290–303. A R Mohamed, D Yu, L Deng. Investigation of full-sequence training of deep belief networks for speech recognition. Proceedings of the International Speech Communication Association Annual Conference, Makuhari, Chiba, Japan, September 26-30, 2010: 2846–2849. B Schölkopf, J Platt, T Hofmann. Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, 2007, 19: 153–160. Y Lei, F Jia, J Lin, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137–3147. P Tamilselvan, P Wang. Failure diagnosis using deep belief learning based health state classification. Reliability Engineering & Systems Safety, 2013, 115(7): 124–135. J Faiz, V Ghorbanian, BM Ebrahimi. EMD-based analysis of industrial induction motors with broken rotor bars for identification of operating point at different supply modes. IEEE Transactions on Industrial Informatics, 2014, 10(2): 957–966. C Szegedy, W Liu, Y Jia, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June 7–12, 2015: 1–9. L Deng, G Hinton, B Kingsbury. New types of deep neural network learning for speech recognition and related applications: An overview. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, May 26-31, 2013: 8599–8603. M Riera-Guasp, J A Antonino-Daviu, G A Capolino. Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: state of the art. IEEE Transactions on Industrial Electronics, 2015, 62(3):1746–1759. X W Chen, X Lin. Big data deep learning: challenges and perspectives. IEEE Access, 2014, 2: 514–525. G E Hinton, S Osindero, Y W Teh. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527–1554. M Zhang, J Tang, X Zhang, et al. Intelligent diagnosis of short hydraulic signal based on improved EEMD and SVM with few low-dimensional training samples. Chinese Journal of Mechanical Engineering, 2016, 29(2): 396–405. G E Hinton, R R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507. Y LeCun, Y Bengio, G Hinton. Deep learning. Nature, 2015, 521(7553): 436–444. Y Jia, E Shelhamer, J Donahue, et al. Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM international Conference on Multimedia, Orlando, Florida, USA, November 3-7, 2014: 675–678. A Steinecker. Automated fault detection using deep belief networks for the quality inspection of electromotors. tm - Technisches Messen. tm - Technisches Messen, 2014, 81(5): 255–263. R Yan, R X Gao, X Chen. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 2014, 96: 1–15. Y Wang, F Zhang, T Cui, et al. Fault diagnosis for manifold absolute pressure sensor (MAP) of diesel engine based on Elman neural network observer. Chinese Journal of Mechanical Engineering, 2016, 29(2): 386–395. C Xiong, S Merity, R Socher. Dynamic memory networks for visual and textual question answering//Proceedings of the International Conference on Machine Learning, New York City, NY, USA, June 19-24, 2016: 2397–2406. K S Tai, R Socher, C D Manning. Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv: 1503.00075, 2015. L Deng, D Yu. Deep learning: methods and applications. Foundations and Trends® in Signal Processing, 2014, 7(3–4): 197–387. J Guo, X Xie, R Bie, et al. Structural health monitoring by using a sparse coding-based deep learning algorithm with wireless sensor networks. Personal and Ubiquitous Computing, 2014, 18(8): 1977–1987. Y Cai, H Wang, X Chen, et al. Vehicle detection based on visual saliency and deep sparse convolution hierarchical model. Chinese Journal of Mechanical Engineering, 2016, 29(4): 765–772. W Sun, S Shao, R Zhao, et al. A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement, 2016, 89: 171–178. P Karvelis, G Georgoulas, I P Tsoumas, et al. A symbolic representation approach for the diagnosis of broken rotor bars in induction motors. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1028–1037. D Matić, F Kulić, M Pineda-sánchez, et al. Support vector machine classifier for diagnosis in electrical machines: Application to broken bar. Expert Systems with Applications, 2012, 39(10): 8681–8689. J Wang, R X Gao, R Yan. Multi-scale enveloping order spectrogram for rotating machine health diagnosis. Mechanical Systems and Signal Processing, 2014, 46(1): 28–44. B Boashash. Time-frequency signal analysis and processing: A comprehensive reference. Academic Press, 2015. I Arel, D C Rose, T P Karnowski. Research frontier: deep machine learning–a new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine, 2010, 5(4): 13–18. M H Drif, A J Cardoso. Stator fault diagnostics in squirrel cage three-phase induction motor drives using the instantaneous active and reactive power signature analyses. IEEE Transactions on Industrial Informatics, 2014, 10(2):1348–1360. [34] F Jia, Y Lei, J Lin, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal Processing, 2016, 72: 303–15. 189_CR23 189_CR45 189_CR22 189_CR44 189_CR25 189_CR47 189_CR24 189_CR46 189_CR41 189_CR40 189_CR21 189_CR43 189_CR20 189_CR42 189_CR19 189_CR16 189_CR38 189_CR15 189_CR37 189_CR18 189_CR17 189_CR39 189_CR1 189_CR2 189_CR3 189_CR4 189_CR12 189_CR34 189_CR5 189_CR11 189_CR33 189_CR6 189_CR14 189_CR36 189_CR7 189_CR13 189_CR35 189_CR8 189_CR30 189_CR9 189_CR10 189_CR32 189_CR31 189_CR27 189_CR26 189_CR29 189_CR28 |
References_xml | – reference: Y Cai, H Wang, X Chen, et al. Vehicle detection based on visual saliency and deep sparse convolution hierarchical model. Chinese Journal of Mechanical Engineering, 2016, 29(4): 765–772. – reference: T Boukra, A Lebaroud, G Clerc. Statistical and neural-network approaches for the classification of induction machine faults using the ambiguity plane representation. IEEE Transactions on Industrial Electronics, 2013, 60(9): 4034–4042. – reference: Y Wang, F Zhang, T Cui, et al. Fault diagnosis for manifold absolute pressure sensor (MAP) of diesel engine based on Elman neural network observer. Chinese Journal of Mechanical Engineering, 2016, 29(2): 386–395. – reference: G Chen, L Qie, A Zhang, et al. Improved CICA algorithm used for single channel compound fault diagnosis of rolling bearings. Chinese Journal of Mechanical Engineering, 2016, 29(1): 204–211. – reference: C Chen, B Zhang, G Vachtsevanos. Prediction of machine health condition using neuro-fuzzy and Bayesian algorithms. IEEE Transactions on Instrumentation and Measurement, 2012, 61(2): 297–306. – reference: C Xiong, S Merity, R Socher. Dynamic memory networks for visual and textual question answering//Proceedings of the International Conference on Machine Learning, New York City, NY, USA, June 19-24, 2016: 2397–2406. – reference: G E Hinton. Learning multiple layers of representation. Trends in Cognitive Sciences, 2007, 11(11): 428–34. – reference: G E Hinton, R R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507. – reference: Y LeCun, Y Bengio, G Hinton. Deep learning. Nature, 2015, 521(7553): 436–444. – reference: M H Drif, A J Cardoso. Stator fault diagnostics in squirrel cage three-phase induction motor drives using the instantaneous active and reactive power signature analyses. IEEE Transactions on Industrial Informatics, 2014, 10(2):1348–1360. – reference: Y L Murphey, M A Masru, Z Chen, et al. Model-based fault diagnosis in electric drives using machine learning. IEEE/ASME Transactions on Mechatronics, 2006, 11(3): 290–303. – reference: D Matić, F Kulić, M Pineda-sánchez, et al. Support vector machine classifier for diagnosis in electrical machines: Application to broken bar. Expert Systems with Applications, 2012, 39(10): 8681–8689. – reference: H Gao, L Liang, X Chen, et al. Feature extraction and recognition for rolling element bearing fault utilizing short-time Fourier transform and non-negative matrix factorization. Chinese Journal of Mechanical Engineering, 2015, 28(1): 96–105. – reference: Y Jia, E Shelhamer, J Donahue, et al. Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM international Conference on Multimedia, Orlando, Florida, USA, November 3-7, 2014: 675–678. – reference: G E Hinton. A practical guide to training restricted Boltzmann machines. Momentum, 2010, 9(1): 599–619. – reference: J Wang, R X Gao, R Yan. Multi-scale enveloping order spectrogram for rotating machine health diagnosis. Mechanical Systems and Signal Processing, 2014, 46(1): 28–44. – reference: B Boashash. Time-frequency signal analysis and processing: A comprehensive reference. Academic Press, 2015. – reference: L Deng, D Yu. Deep learning: methods and applications. Foundations and Trends® in Signal Processing, 2014, 7(3–4): 197–387. – reference: G E Hinton, S Osindero, Y W Teh. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527–1554. – reference: K S Tai, R Socher, C D Manning. Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv: 1503.00075, 2015. – reference: B Schölkopf, J Platt, T Hofmann. Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, 2007, 19: 153–160. – reference: P Karvelis, G Georgoulas, I P Tsoumas, et al. A symbolic representation approach for the diagnosis of broken rotor bars in induction motors. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1028–1037. – reference: Q V Le. Building high-level features using large scale unsupervised learning. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, May 26-31, 2013: 8595–8598. – reference: C Szegedy, W Liu, Y Jia, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June 7–12, 2015: 1–9. – reference: X Yang, R Yan, R X Gao. Induction motor fault diagnosis using multiple class feature selection. Proceedings of 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Pisa, Italy, May 11-15, 2015: 256–260. – reference: V T Tran, F Althobiani, A Ball. An approach to fault diagnosis of reciprocating compressor valves using Teager–Kaiser energy operator and deep belief networks. Expert Systems with Applications, 2014, 41(9): 4113–4122. – reference: A R Mohamed, D Yu, L Deng. Investigation of full-sequence training of deep belief networks for speech recognition. Proceedings of the International Speech Communication Association Annual Conference, Makuhari, Chiba, Japan, September 26-30, 2010: 2846–2849. – reference: X W Chen, X Lin. Big data deep learning: challenges and perspectives. IEEE Access, 2014, 2: 514–525. – reference: J Guo, X Xie, R Bie, et al. Structural health monitoring by using a sparse coding-based deep learning algorithm with wireless sensor networks. Personal and Ubiquitous Computing, 2014, 18(8): 1977–1987. – reference: W Sun, S Shao, R Zhao, et al. A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement, 2016, 89: 171–178. – reference: J Antonino-Daviu, S Aviyente, E G Strangas, et al. Scale invariant feature extraction algorithm for the automatic diagnosis of rotor asymmetries in induction motors. IEEE Transactions on Industrial Informatics, 2013, 9(1): 100–108. – reference: H Keskes, A Braham. Recursive undecimated wavelet packet transform and DAG SVM for induction motor diagnosis. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1059–1066. – reference: R Yan, R X Gao, X Chen. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 2014, 96: 1–15. – reference: I Arel, D C Rose, T P Karnowski. Research frontier: deep machine learning–a new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine, 2010, 5(4): 13–18. – reference: Y Bengio. Learning deep architectures for AI. Foundations & Trends® in Machine Learning, 2009, 2(1): 1–55. – reference: P Tamilselvan, P Wang. Failure diagnosis using deep belief learning based health state classification. Reliability Engineering & Systems Safety, 2013, 115(7): 124–135. – reference: G E Hinton. To recognize shapes, first learn to generate images. Progress in Brain Research, 2007, 165(6): 535–47. – reference: J Sun, A Steinecker, P Glocker. Application of deep belief networks for precision mechanism quality inspection. Precision Assembly Technologies and Systems, 2014: 87–93. – reference: K He, X Zhang, S Ren, et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, June 27-30, 2016: 770–778. – reference: A Steinecker. Automated fault detection using deep belief networks for the quality inspection of electromotors. tm - Technisches Messen. tm - Technisches Messen, 2014, 81(5): 255–263. – reference: J Faiz, V Ghorbanian, BM Ebrahimi. EMD-based analysis of industrial induction motors with broken rotor bars for identification of operating point at different supply modes. IEEE Transactions on Industrial Informatics, 2014, 10(2): 957–966. – reference: [34] F Jia, Y Lei, J Lin, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal Processing, 2016, 72: 303–15. – reference: L Deng, G Hinton, B Kingsbury. New types of deep neural network learning for speech recognition and related applications: An overview. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, May 26-31, 2013: 8599–8603. – reference: M Zhang, J Tang, X Zhang, et al. Intelligent diagnosis of short hydraulic signal based on improved EEMD and SVM with few low-dimensional training samples. Chinese Journal of Mechanical Engineering, 2016, 29(2): 396–405. – reference: Y Lei, F Jia, J Lin, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137–3147. – reference: R Salakhutdinov, G Hinton. Deep Boltzmann Machines. Journal of Machine Learning Research, 2009, 5(2): 1967–2006. – reference: M Riera-Guasp, J A Antonino-Daviu, G A Capolino. Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: state of the art. IEEE Transactions on Industrial Electronics, 2015, 62(3):1746–1759. – ident: 189_CR10 doi: 10.1016/j.eswa.2012.01.214 – ident: 189_CR44 – ident: 189_CR1 doi: 10.3901/CJME.2014.1103.166 – ident: 189_CR42 doi: 10.21437/Interspeech.2010-304 – ident: 189_CR17 – ident: 189_CR11 doi: 10.1109/TIE.2016.2519325 – ident: 189_CR18 doi: 10.1016/j.sigpro.2013.04.015 – ident: 189_CR22 doi: 10.1561/2200000006 – ident: 189_CR23 doi: 10.1145/2647868.2654889 – ident: 189_CR2 doi: 10.3901/CJME.2015.1026.127 – ident: 189_CR12 doi: 10.1109/TIE.2012.2216242 – ident: 189_CR32 – ident: 189_CR35 doi: 10.1016/j.ress.2013.02.022 – ident: 189_CR13 doi: 10.1109/TII.2015.2462315 – ident: 189_CR15 doi: 10.1109/TMECH.2006.875568 – ident: 189_CR5 doi: 10.3901/CJME.2015.1211.145 – ident: 189_CR37 doi: 10.1007/s00779-014-0800-5 – ident: 189_CR4 doi: 10.1109/TII.2014.2307013 – ident: 189_CR30 doi: 10.1038/nature14539 – ident: 189_CR40 doi: 10.1016/j.measurement.2016.04.007 – ident: 189_CR8 doi: 10.1109/TII.2015.2463680 – ident: 189_CR21 doi: 10.1109/MCI.2010.938364 – ident: 189_CR39 doi: 10.1007/978-3-662-45586-9_12 – ident: 189_CR43 – ident: 189_CR28 doi: 10.1109/ICASSP.2013.6639343 – ident: 189_CR24 doi: 10.1109/CVPR.2016.90 – ident: 189_CR3 doi: 10.1109/TIE.2014.2375853 – ident: 189_CR20 doi: 10.1126/science.1127647 – ident: 189_CR19 doi: 10.1016/j.tics.2007.09.004 – ident: 189_CR47 doi: 10.1109/I2MTC.2015.7151275 – ident: 189_CR31 doi: 10.1561/2000000039 – ident: 189_CR41 doi: 10.1109/ACCESS.2014.2325029 – ident: 189_CR16 doi: 10.1016/j.ymssp.2013.06.001 – ident: 189_CR26 doi: 10.3901/CJME.2016.0408.048 – ident: 189_CR7 doi: 10.1109/TII.2013.2289941 – ident: 189_CR29 doi: 10.1109/ICASSP.2013.6639344 – ident: 189_CR38 doi: 10.1515/teme-2014-1006 – ident: 189_CR27 doi: 10.1016/S0079-6123(06)65034-6 – ident: 189_CR33 – ident: 189_CR9 doi: 10.3901/CJME.2015.1214.147 – ident: 189_CR34 doi: 10.1016/j.ymssp.2015.10.025 – ident: 189_CR25 doi: 10.1109/CVPR.2015.7298594 – ident: 189_CR45 doi: 10.7551/mitpress/7503.001.0001 – ident: 189_CR14 doi: 10.1109/TIM.2011.2169182 – ident: 189_CR6 doi: 10.1109/TII.2012.2198659 – ident: 189_CR36 doi: 10.1016/j.eswa.2013.12.026 – ident: 189_CR46 doi: 10.1162/neco.2006.18.7.1527 |
SSID | ssj0006118 |
Score | 2.473102 |
Snippet | Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of... Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors,as it directly influences the performance of... |
SourceID | wanfang proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1347 |
SubjectTerms | Algorithms Belief networks Classification Computer simulation Deep learning Diagnostic systems Electrical Machines and Networks Electronics and Microelectronics Engineering Engineering Thermodynamics Fault diagnosis Feature extraction Feature recognition Frequency distribution Heat and Mass Transfer Induction motors Instrumentation Machine learning Machines Manufacturing Mechanical Engineering Original Article Power Electronics Processes Theoretical and Applied Mechanics |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46X_RBvGLdlCA-KYWk9z4W5xjCBMHB3kLTnszJaKfbYPv3nvSyTpCBb4UmJyUnOZcm33cIuXdT6Svblabr6l83MmVmGIDELCXhcZCgi_c0wHnw6vWHzsvIHVU47nl9270-kiws9RbYTdcd01aV8SA01_vkwMXUXS_roRVtzK_HeYl_Yzis7bj1UeZfIjShwkeejb9wuN-OqYk2NwekBawnU3E23vJAvRNyXIWONCp1fUr2IDsjR1uEgufkLaJdgBmtWFPHNKoowynGprQXL6cL2i0v103mNFdUV-4okA10kOu6O3SCT3G21HiHAsB4QYa95_envlkVTTATJ_AWZsISnbJJkEo6KowZUwHndsp8K1E2R83EGKn6oNCT-ykDL0RbGVtgg-bJkal9SVpZnsEVoZ7CaCQIHIs70ik2vwuACRD3GITAwSDtzeyJWUmOoe-JYQqFn2AQVs-nSCq-cV32YioapmStDoHqEFodYm2Qh02XWt6Oxp1aSaLad3OB1gkDUof7nkEea8U1r3cIu6t02zT-XI2TlRRglRRDLLj-l8g2OdQ9S9xih7QW30u4wQBmIW-LBfsDgZ7lJQ priority: 102 providerName: Springer Nature |
Title | A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing |
URI | http://lib.cqvip.com/qk/85891X/201706/673996409.html https://link.springer.com/article/10.1007/s10033-017-0189-y https://www.proquest.com/docview/2259324176 https://d.wanfangdata.com.cn/periodical/jxgcxb-e201706008 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFLcYXLbDtMGmdTBkTTsNRdj5cJzTlJUWBAIBohKcrNixCxNKytpK8N_vvcRp2KWXJEocx_Jz3oft3-8R8iMpdeqiRAdJglM3umRBJq2GKMXwQhow8QIBzucX4mQSn94mt37Cbe63VXY6sVHUZW1wjvwQxh24GjFPxa_ZU4BZo3B11afQeEO2OFgaHOFyfLzSxILzFgrHoAVRnHSrmi10DrOYoY5mXGbBC3Ir3NfV9Aksxv82qnc8V2ulDcKnckU1fWWMxh_Ie-9F0rwV-0eyYatt8u4Vt-AOucrpkbUz6glUpzT37OEU3FQ6LpaPC3rU7rN7mNPaUUzi0YAc6HmNKXjoA1wV1RKhDw2W8ROZjEc3w5PA508ITCzFIjDMYPSmrXY6dlnBmJOcRyVLQ-MiDkIqwGlNrQOjnpbMigzUZhHayCJlji6jz2Szqiv7hVDhwDGRMg55rONGDyTWQizEBbOZ5XZAdle9p2YtTwZuGYNoCpowIKzrT2U89ThmwHhUPWkyikOBOBSKQ70MyM_VK119awrvdUJS_hecq37ADMhBJ7j-8ZrKvnvZ9oX_PE_Ns1Y2bNmGmPy6_ou75C0WbTGLe2Rz8Xdpv4HzstD7zQjdJ1v58d3ZCM6_RxeX13B3KIZwnIT5P7kd7RQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYWsBCcAFF2ImTOAeEVizLlnYrIbVSbyZ27KWoSrbsruj-KX4jM3lsymVvvUWK4zieyTxsf98AvIkLk_ooNkEc09KNKXiQKWcwS7EiVxZdfEIA5-lxMjmV387isx3422Fh6FhlZxNrQ11UltbIP6DeYaghRZp8ml8GVDWKdle7EhqNWhy69R9M2RYfD0Yo37dhOP5y8nkStFUFAitVsgwst5TTGGe8kT7LOfdKiKjgaWh9JHDoOYZyqfPo6tKCuyRDY5KHLnJEJGOKCPu9BbdlFGV0hFCNv24sfyJEA73j-MWRjLtd1AaqR1XTyCdwobJgTVwOP6tydoke6n-f2Ae6m73ZGlFU-rycXXN-4wdwv41a2bBRs4ew48pHcO8al-Fj-D5kI-fmrCVsnbFhy1bOMCxm43x1sWSj5lzf-YJVnlHRkBpUwaYVlfxh53iVlyuCWtTYySdweiMz-xR2y6p0z4AlHgMhpWQopJG13Ymdw9xLJNxlTrgB7G1mT88bXg46oobZGw5hALybT21bqnOquHGhe5JmEodGcWgSh14P4N3mka6_LY33OyHp9pdf6F5BB_C-E1x_e0tnr1vZ9o1_Xc3sldEubNiNuHq-_Y2v4M7kZHqkjw6OD_fgLj3W4CX3YXf5e-VeYOC0NC9rbWXw46Z_j3_ftyWZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB6qhaIPpfUHXrV2KT5ZgruXZJM8Hnc9tK2ioODbkk1mT0Vyp5cD_e87kx93J4jgWyCbSdgvmZ3JzvcNwEGY28j5ofXCkH_d2Fx6SYyWspRMpXFGS7xmgvPpmT6-Cv5ch9dNn9NpW-3ebknWnAZWaSrKo0nujpaIb9yDjD2sVHHiPa_AR0pUFNf09XV_7oq1UjUXTtIj-EHYbmu-ZoLFFW7GxeiBbv1ykVpEnvPN0oriU7i0GC2tRsMv8LkJI0Wvxv0rfMBiA9aXxAU34aInBogT0SiojkSvkQ8XFKeKYTq7L8WgLrS7nYqxE9zFo2I5iNMx9-ARt3SUFjPmPlRkxi24Gv6-7B97TQMFLwtiXXqZzDh9s2idDVySSulipfxcRt3M-YpQSilqjdDRqh7lEnVCfjPtoo-smWNzfxtWi3GBOyC0o8gkjoOuCmxQOYIQkZIhpSUmqLADu_PZM5NaKINrxiidokfogGzn02SN9ji3wLg3C9VkhsMQHIbhMM8dOJxf0tp7Y_BeC5JpvsGpIU9FwWmgIt2BXy1wi9NvGPvZYLsYfPc0yp6swW4tNyTjb-8y-QM-nQ-G5t_J2d9dWGMjNZ1xD1bLxxl-p7imtPvVu_sf42zsPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+for+Fault+Diagnosis+of+Induction+Motors+in+Manufacturing&rft.jtitle=Chinese+journal+of+mechanical+engineering&rft.au=Si-Yu%2C+Shao&rft.au=Wen-Jun%2C+Sun&rft.au=Ru-Qiang+Yan&rft.au=Wang%2C+Peng&rft.date=2017-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1000-9345&rft.eissn=2192-8258&rft.volume=30&rft.issue=6&rft.spage=1347&rft.epage=1356&rft_id=info:doi/10.1007%2Fs10033-017-0189-y |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85891X%2F85891X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjxgcxb-e%2Fjxgcxb-e.jpg |