A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based...
Saved in:
Published in | Chinese journal of mechanical engineering Vol. 30; no. 6; pp. 1347 - 1356 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Chinese Mechanical Engineering Society
01.11.2017
Springer Nature B.V Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA%Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland 44106, USA School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China%School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China |
Edition | English ed. |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing work- ing status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by- layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierar- chical representations, which are suitable for fault classi- fication, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition. |
---|---|
Bibliography: | Fault diagnosis ; Deep learning ; Deep beliefnetwork. RBM ; Classification 11-2737/TH Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing work- ing status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by- layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierar- chical representations, which are suitable for fault classi- fication, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1000-9345 2192-8258 |
DOI: | 10.1007/s10033-017-0189-y |