Therapeutic effects of bone marrow-derived mesenchymal stem cells on radiation-induced lung injury

Radiation-induced lung injury (RILI) is a fatal condition featured by interstitial pneumonitis and fibrosis. Mesenchymal stem cells (MSCs) have been widely used for treating RILI in rodent models. In the present study, we aimed to investigate whether the therapeutic effects of human bone marrow-deri...

Full description

Saved in:
Bibliographic Details
Published inOncology reports Vol. 35; no. 2; pp. 731 - 738
Main Authors XIA, CHENGCHENG, CHANG, PENGYU, ZHANG, YUYU, SHI, WEIYAN, LIU, BIN, DING, LIJUAN, LIU, MIN, GAO, LING, DONG, LIHUA
Format Journal Article
LanguageEnglish
Published Greece D.A. Spandidos 01.02.2016
Spandidos Publications
Spandidos Publications UK Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Radiation-induced lung injury (RILI) is a fatal condition featured by interstitial pneumonitis and fibrosis. Mesenchymal stem cells (MSCs) have been widely used for treating RILI in rodent models. In the present study, we aimed to investigate whether the therapeutic effects of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) on RILI were in a dose-dependent manner. A total of 100 mice were randomly divided into: a control group (n=25), subject to lung irradiation and injection of phosphate-buffered solution (PBS) via the tail vein; and the hBM-MSC group, subject to lung irradiation followed by injection of a low dose (1×103 hBM-MSCs/g), medium dose (5×103 hBM-MSCs/g) and high dose (1×104 hBM-MSCs/g) of hBM-MSCs in PBS through the tail vein, respectively. After sacrifice, the pulmonary tissues were subject to hematoxylin and eosin (H&E) staining, Masson's trichrome staining and immunohistochemical staining to investigate the pathological changes. Immunofluorescent staining was performed to evaluate the differentiation capacity of hBM-MSCs in vivo by analyzing the expression of SPC and PECAM. hBM-MSCs improved the survival rate and histopathological features in the irradiated mice, especially in the low-dose group. Marked decrease in collagen deposition was noted in the irradiated mice treated using a low dose of hBM-MSCs. In addition, hBM-MSCs attenuated secretion and expression of IL-10 and increased the expression of TNF-α. Furthermore, hBM-MSCs had the potential to differentiate into functional cells upon lung injury. Low-dose hBM-MSCs contributed to functional recovery in mice with RILI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1021-335X
1791-2431
1791-2431
DOI:10.3892/or.2015.4433