Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein
The cellular phosphoprotein p53 inhibits progression through the mammalian cell cycle. Both p53 alleles are frequently mutated in human tumours, indicating that p53 is a tumour suppressor. Recent studies have suggested that p53 functions as a transcriptional activator, but the significance of this a...
Saved in:
Published in | Nature (London) Vol. 357; no. 6373; pp. 82 - 85 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing
07.05.1992
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The cellular phosphoprotein p53 inhibits progression through the mammalian cell cycle. Both p53 alleles are frequently mutated in human tumours, indicating that p53 is a tumour suppressor. Recent studies have suggested that p53 functions as a transcriptional activator, but the significance of this activity in cell-cycle control has not been established. The adenovirus 2 (Ad2) early 1B (E1B) 55K protein binds to p53 in transformed cells and contributes to oncogenic transformation by Ad2 (refs 10-12). Here we report that mutants of E1B 55K and wild-type Ad12 E1B 54K proteins show a strong correlation between their ability to inhibit p53-mediated transcriptional activation and their ability to cooperate with adenovirus E1A protein in the transformation of primary cells. These results indicate that p53 probably inhibits cell cycling by functioning as a transcription factor. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/357082a0 |