The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer
A super-flexible single-walled carbon nanotube (SWCNT) transparent conductive film (TCF) was produced based on a combination of electrophoretic deposition (EPD) and hot-pressing transfer. EPD was performed in a diluted SWCNT suspension with high zeta potential prepared by a pre-dispersion-then-dilut...
Saved in:
Published in | Nanotechnology Vol. 20; no. 23; p. 235707 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
10.06.2009
|
Online Access | Get full text |
Cover
Loading…
Summary: | A super-flexible single-walled carbon nanotube (SWCNT) transparent conductive film (TCF) was produced based on a combination of electrophoretic deposition (EPD) and hot-pressing transfer. EPD was performed in a diluted SWCNT suspension with high zeta potential prepared by a pre-dispersion-then-dilution procedure using sodium dodecyl sulfate as the surfactant and negative charge supplier. A SWCNT film was deposited on a stainless steel anode surface by direct current electrophoresis and then transferred to a poly(ethylene terephthalate) substrate by hot-pressing to achieve a flexible SWCNT TCF. The SWCNT TCF obtained by this technique can achieve a sheet resistance of 220 Omega/sq with 81% transparency at 550 nm wavelength and a strong adhesion to the substrate. More importantly, no decrease in the conductivity of the SWCNT TCF was detected after 10 000 cycles of repeated bending. The result indicates that the EPD and hot-pressing transfer technique is an effective approach for fabricating a carbon nanotube TCF with excellent flexibility. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/20/23/235707 |