Living-Neuron-Based Autogenerator
We present a novel closed-loop system designed to integrate biological and artificial neurons of the oscillatory type into a unified circuit. The system comprises an electronic circuit based on the FitzHugh-Nagumo model, which provides stimulation to living neurons in acute hippocampal mouse brain s...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 16; p. 7016 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present a novel closed-loop system designed to integrate biological and artificial neurons of the oscillatory type into a unified circuit. The system comprises an electronic circuit based on the FitzHugh-Nagumo model, which provides stimulation to living neurons in acute hippocampal mouse brain slices. The local field potentials generated by the living neurons trigger a transition in the FitzHugh–Nagumo circuit from an excitable state to an oscillatory mode, and in turn, the spikes produced by the electronic circuit synchronize with the living-neuron spikes. The key advantage of this hybrid electrobiological autogenerator lies in its capability to control biological neuron signals, which holds significant promise for diverse neuromorphic applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23167016 |