URANS simulations of ship motion responses in long-crest irregular waves

In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with o...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrodynamics. Series B Vol. 26; no. 3; pp. 436 - 446
Main Author 沈志荣 叶海轩 万德成
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.07.2014
Springer Singapore
Subjects
Online AccessGet full text
ISSN1001-6058
1878-0342
DOI10.1016/S1001-6058(14)60050-0

Cover

More Information
Summary:In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with one single run to obtain a complete curve of linear motion response, considerably reducing computation time. A correction procedure is employed to adjust the wave generation signal based on the wave spectrum and achieves fairly better results in the wave tank. Three ship models with five wave conditions are introduced to validate the method. The computations in this paper are completed by using the solver naoe-FOAM-SJTU, a solver developed for ship and ocean engineering based on the open source code OpenFOAM. The computational motion responses by the irregular wave procedure are compared with the results by regular wave, experiments and strip theory. Transfer functions by irregular wave closely agree with the data obtained in the regular waves, showing negligible difference. The comparison between computational results and experiments also show good agreements. The results better predicted by CFD method than strip theories indicate that this method can compensate for the inaccuracy of the strip theories. The results confirm that the irregular wave procedure is a promising method for the accurate prediction of motion responses with less accuracy loss and higher efficiency compared with the regular wave procedure.
Bibliography:irregular waves,white noise spectrum,unsteady incompressible Reynolds-Average Navier-Stokes(URANS) equations,ship motion response,naoe-FOAM-SJTU solver,OpenFOAM
31-1563/T
SHEN Zhi-rong, YE Hai-xuan, WAN De-cheng (State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China )
In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with one single run to obtain a complete curve of linear motion response, considerably reducing computation time. A correction procedure is employed to adjust the wave generation signal based on the wave spectrum and achieves fairly better results in the wave tank. Three ship models with five wave conditions are introduced to validate the method. The computations in this paper are completed by using the solver naoe-FOAM-SJTU, a solver developed for ship and ocean engineering based on the open source code OpenFOAM. The computational motion responses by the irregular wave procedure are compared with the results by regular wave, experiments and strip theory. Transfer functions by irregular wave closely agree with the data obtained in the regular waves, showing negligible difference. The comparison between computational results and experiments also show good agreements. The results better predicted by CFD method than strip theories indicate that this method can compensate for the inaccuracy of the strip theories. The results confirm that the irregular wave procedure is a promising method for the accurate prediction of motion responses with less accuracy loss and higher efficiency compared with the regular wave procedure.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-6058
1878-0342
DOI:10.1016/S1001-6058(14)60050-0