Evidence for Both Abnormal Set Point of PTH Stimulation by Calcium and Adaptation to Serum Calcium in Hemodialysis Patients with Hyperparathyroidism
In vitro studies of parathyroid glands removed from dialysis patients with secondary hyperparathyroidism and hypercalcemia have demonstrated the presence of an increased set point of parathyroid hormone (PTH) stimulation by calcium (set point [PTHstim]), suggesting an intrinsic abnormality of the hy...
Saved in:
Published in | Journal of bone and mineral research Vol. 12; no. 3; pp. 347 - 355 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR)
01.03.1997
American Society for Bone and Mineral Research |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In vitro studies of parathyroid glands removed from dialysis patients with secondary hyperparathyroidism and hypercalcemia have demonstrated the presence of an increased set point of parathyroid hormone (PTH) stimulation by calcium (set point [PTHstim]), suggesting an intrinsic abnormality of the hyperplastic parathyroid cell. However, clinical studies on dialysis patients have not observed a correlation between the set point (PTHstim) and the magnitude of hyperparathyroidism. In the present study, 58 hemodialysis patients with moderate to severe hyperparathyroidism (mean PTH 780 ± 377 pg/ml) were evaluated both before and after calcitriol treatment to establish the relationship among PTH, serum calcium, and the set point (PTHstim) and to determine whether changes in the serum calcium, as induced by calcitriol treatment, modified these relationships. Calcitriol treatment decreased serum PTH levels and increased the serum calcium and the setpoint (PTHstim); however, the increase in serum calcium was greater than the increase in the setpoint (PTHstim). Before treatment with calcitriol, the correlation between the set point (PTHstim) and the serum calcium was r = 0.82, p < 0.001, and between the set point (PTHstim) and PTH was r = 0.39, p = 0.002. After treatment with calcitriol, the correlation between the set point (PTHstim) and the serum calcium remained significant (r = 0.70, p < 0.001), but the correlation between the set point (PTHstim) and PTH was no longer significant (r = 0.09); moreover, a significant correlation was present between the change in the set point (PTHstim) and the change in serum calcium that resulted from calcitriol treatment (r = 0.73, p < 0.001). The correlation between the residual values (deviation from the regression line) of the set point (PTHstim), derived from the correlation between PTH and the set point (PTHstim), and serum calcium was r = 0.77, p < 0.001 before calcitriol and r = 0.72, p < 0.001 after calcitriol. In conclusion, the set point (PTHstim) increased after a sustained increase in the serum calcium, suggesting an adaptation of the set point to the existing serum calcium; the increase in serum calcium resulting from calcitriol treatment was greater than the increase in the set point (PTHstim); the set point (PTHstim) was greater in hemodialysis patients with higher serum PTH levels; and the correlation between PTH and the set point (PTHstim) may be obscured because the serum calcium directly modifies the set point (PTHstim). |
---|---|
Bibliography: | Work performed as Visiting Professor of Medicine, Facultad de Medicina, Cordoba, Spain ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0884-0431 1523-4681 |
DOI: | 10.1359/jbmr.1997.12.3.347 |